人工智能技术的飞速发展,加速了各行各业数字化转型的进程。随着深度学习与自然语言处理技术的不断突破,大模型以其卓越的数据处理能力、高效的学习效率和广泛的应用潜力,成为了推动数字化转型的重要引擎。作为大模型技术和应用的领先者和开拓者,中关村科金基于10年来积累的领域和行业产品基础,以及服务1600多家行业客户的一线实战经验,发布了大模型时代的“三级引擎战略”,重磅升级的得助大模型平台2.0 。中关村科金认为平台+应用+服务是企业大模型落地的最佳路径。目前,已成功推出了适用于多个行业场景的领域大模型,如企业知识大模型、公安反诈大模型、医保大模型、电销大模型等,积累了丰富的真实业务场景实践,企业大模型升级的最佳伙伴。
“得助”大模型平台:10分钟内搭建机器人
在大模型技术的无限潜力和市场前景的推动下,中关村科金推出了“得助”大模型平台。作为一体化、一站式的AI应用构建平台,它不仅覆盖了从底层数据加工到模型训练,再到大小模型服务部署及模型应用的全流程,更在多个关键技术点上展现了突出的优势。
首先,面对构建高效多机多卡集群网络的挑战,中关村科金通过构建高速训练数据通讯网络,利用业界领先的并行技术如数据并行、模型并行和流水线并行等前沿技术,大幅提升了模型训练的时效性与稳定性,为AI应用的快速迭代与部署奠定了坚实基础。
同时,中关村科金自研的算力调度引擎,不仅是技术创新的亮点,更是实现资源灵活伸缩、提升GPU训练时效与降低成本的关键。该引擎深度融合并行技术,实现了算力的智能分配与潮汐调度,使同一批算力资源能够在不同业务需求间高效流转,如从白天的服务A业务无缝切换至夜间的训练及AI工作,能明显提升资源利用率和经济效益。此外,通过封装SFT等训练工具,降低了训练门槛,使得更多非专业算法工程师也能参与其中,促进了AI技术的普及与应用。
在应用层面,通过构建高质量训练样本、引入智能陪练系统以及定制化电销大模型等策略,从根本上保障模型训练的质量与效果,有效解决了数据质量不稳定、特定领域数据量不足等行业痛点,为AI模型在实际业务场景中的精准应用提供了强有力的支撑。
根据不同的业务场景和需求,大模型基础平台的洞察模块会对数据进行针对性的处理、提炼和增强;在开发和调优阶段,中关村科金大运营平台的一系列工具,则积累了所有历史开发的模板,由此形成了一套完整的工具链。
“哪怕是在新领域新场景,我们的工具链也可以实现快速开发、调优、评测和上线。现在搭建一个机器人,10分钟内就能搞定。”中关村科金技术总监王素文说。
中关村科金“得助”大模型平台专注于构建高质量的训练样本,利用智能数据处理与增强技术,解决了数据质量波动和特定领域数据稀缺的问题,为模型训练提供了坚实保障,展现出了全面的技术支持、高效的资源配置和易于使用的竞争优势。
多领域深度落地 重塑产品体验
目前,中关村科金“得助”大模型平台的应用场景主要集中在客户经营、客户服务以及企业内部运营三个方面,落地在金融、政务、工业制造、零售等行业,电销、智能培训陪练、客服、企业内部知识问答以及写作等场景。
例如在电商场景中,为电商团队开发了文本机器人,帮助处理在线接待和产品咨询等问题。某电商平台有近200人的客服团队,首先需要解决的主要痛点是产品专业性较强,传统机器人需要配备运营人员,且涉及多个ICQ和多轮对话场景,效果并不理想;其次,遇到无法回答的问题仍需要转人工接待,导致人员成本较高。基于此,中关村科金团队通过大模型对其进行了重塑。
“我们将客户的历史会话和相关知识文档全部融合到大模型中,进行RAG和基础模型训练,以提高问答准确率和独立解决问题的能力,整体接待率提升了25%,实现了降本增效的效果。应答覆盖率从64%提高至约90%,独立解决问题率提高了约15%。”王素文说。
在政务场景中,中关村科金为某医保单位提供定制化服务,帮助他们实现7x24小时的医保政策咨询服务和业务办理,包括即问即办功能等,例如从前需要备案办理的异地就医,现在则可以通过大模型来实现办理。据介绍,该机器人能实时更新知识库,并通过多渠道聊天窗口自动调用大模型进行问答,应答准确率已超过90%。
“大模型的泛化能力比较强,我们基于大模型构建了整体的agent,把所有的知识汇总,采用了一系列包括项目化处理、检索能力、召回能力和文档分析能力等,最终提高了问答准确率。”王素文说。
在金融、零售等场景中,中关村科金基于大模型的智能陪练系统应用较为广泛。一方面,传统的方式需要花费大量时间制作课程和试题,而大模型可以自动生成考题和视频,大大缩短制作课程和题目的时间,节省了时间成本和人力成本;另一方面,通过人机交互的模拟,大模型还可以作为高效的一对一陪练机器人,提供个性化的学习体验,实现千人千面的指导,根据每个人的特点生成不同的话术和考题。这种数字化考培一体的模式,或将打造成新一代的企培服务场景,极大地提升行业水平,重塑行业格局。
大模型电销场景最佳范式
“电销是我们的主要应用场景之一,也得到了很多客户的认可。”
2024年以来,中关村科金上线的电销大模型,依托大模型强大的学习能力,投产后快速学习并模仿优秀坐席的展业技巧,在实际应用实践中,销售业绩追评甚至超过了人工坐席中位水平。
“我们的模型答得好、答得流畅、学得快,相较于传统外呼,转化率提升了30%,20秒内挂机率下降了30%。”王素文说。
据了解,电销大模型的每个环节都做了针对性调整,例如音色方面,集成了中关村科金自研的TTS和ASR技术,确保音色的自然流畅与识别的高精度,拟人化程度较高,为用户带来舒适听觉体验的同时,系统还会自动分析客户对话内容,实时调整回复策略,并根据客户的情绪反馈,灵活调整语气和措辞,使对话更加贴近人心,有效提升了说服力和转化率。据中关村科金不完全统计,电销大模型在某金融行业应用后,与传统电销相比,模型与客户的平均通话时长提升了50%,对话轮次增加了83%。
同时,电销大模型还构建了人机协同的强化学习链路,通过对海量对话数据的不断学习与优化,持续提升agent的对话能力,确保能够针对不同客户、不同场景提供更加个性化、高效的解决方案。
“我们主要解决的是如何通过平台构建agent,针对不同的客户、行业和领域,快速使用他们的领域知识来构建外呼agent,这就用到了“得助”大模型平台的数据快速加工、处理和训练能力,因此,中关村科金的电销大模型效果会更好、更有针对性。”王素文说。
此外,在追求技术创新与应用落地的同时,中关村科金注重数据安全与隐私保护。平台采取了一系列严格的安全措施,确保客户数据的安全,赢得了客户的广泛信任与好评。未来,中关村科金将继续优化升级大模型基础平台及其应用场景解决方案,为AI技术的深度应用与广泛普及开辟新的道路。