随着人工智能的持续演进,大语言模型在越来越多的领域中发挥着关键作用。对中小企业或个人用户而言,如何选择适合自身需求、具有高性价比且能够快速落地的大语言模型,成为技术应用的核心关切。为此,CSDN开源与智能技术创新研究院在近期重磅发布了新一轮的大语言模型(以下简称“大模型”)综合测评榜单。本次测评基于“在中小企业或者个人用户可轻松获取与使用”的原则,从本地部署能力与API可用性两大基础指标出发,结合多维度场景化测评方法,全面呈现各大模型在数学推理、知识问答、指令生成、内容创作、安全对齐、小样本学习等方面的真实表现。此次测评以其创新的评估方式、丰富的场景覆盖、专业的志愿者团队以及对未来模型的开放态度,赢得业内广泛关注,也为行业发展注入了新的活力和思考空间。
一、测评初心与意义
1. 致力于为实际应用提供参考
传统的大语言模型测评多聚焦于静态文本数据集或单一指标,难以捕捉模型在真实世界中需要面对的多变场景和复杂任务。中小企业或个人开发者在面临具体业务问题时,不仅需要模型提供高质量的回答,还需要考量部署的可行性、成本、维护难度以及与现有系统的集成等因素。基于此,本次测评首要目标就是“帮助用户快速找到特定场景下的最佳模型”,为后续的落地和二次开发提供参考。
2. 引入场景与多步任务
随着AI应用的不断成熟,人们对大语言模型的需求也从单步回答演进到复杂多步决策和跨系统数据交互。一般的测评数据集中,大模型可能只需要回答“翻译这句话”“总结这篇文章”等相对简单的问题,而缺乏对复杂任务的考察,例如:在多模块系统中进行上下文理解和不同语境切换;在专业领域需要多重推理或跨领域知识融合;在数学、编程、创意写作等场景中需要多步骤演绎。为此,本次测评特别在量化测分之外,引入了真人和裁判模型互动的方式,通过人工观察和自动判别的结合,更好地还原真实使用体验。
3. 权威团队与多学科协作
CSDN开源与智能技术创新研究院联合多所高校教师及研究生,覆盖数学、计算机科学、语言学、社会学等多个学科领域。评测团队同样包括经验丰富的AI工程师、数据科学家和系统运维专家,为测评工具的开发与数据分析提供强有力的技术支撑。同时,CSDN平台广泛的用户基础也为本次测评提供了多元化的反馈和权重投票数据,有效保障了测评结果的科学性与公正性。
二、本次测评的原则与执行概况
1. 本地部署能力
面向中小企业或个人开发者,模型是否能在10B参数量以下进行本地部署,是一个极具实际价值的标准。本地部署的优势在于能够自主掌控数据和服务,增强数据隐私与安全性;同时在网络环境不稳定、云成本敏感的场景下,离线或半离线部署也显得尤为关键。
2. API可用性
并非所有应用场景都适合或需要本地部署。对于一些弹性需求或快速上线的项目,通过官方提供的API接口进行调用也是一种重要选项。本次测评特别针对“是否提供API”“调用的易用性与性能表现”等方面进行了深入考察。在考察模型的推理速度、准确度的同时,也关注了开发者文档、示例代码、技术支持等周边生态。
三、测评维度与指标说明
为更全面地衡量大语言模型的综合能力,本次测评设置了以下六大核心维度,并在每个维度内制定了具体的测试项目:
- 数学与推理能力
- 通用知识类能力
- 指令生成能力
- 内容生成能力
- 安全与对齐能力
- 小样本学习能力
在每个维度下,志愿者与裁判模型会通过一系列预先设计的测试题目、真实使用场景进行打分与评价,并结合专家组的讨论和用户投票权重进行综合排名。与传统以单一指标或固定答题集为主的测评方式相比,本次测评注重多维度、场景化与连续交互,使得评分更具参考价值。
四、测评方法与团队
1. 专业测试团队
测评团队成员来自多所高校以及行业资深AI从业者,具有跨学科背景,能够从语言学、认知科学、计算机系统结构、信息检索等多个角度对模型的答案进行专业评判。同时,团队中还包括具备大规模AI系统运维经验的工程师,能够精确评估模型在真机部署时遇到的内存、存储、网络、GPU加速等多种实际问题。
2. 测评工具与自动化流程
本次测评并非仅依赖人工主观感受,而是结合了一系列自动化测评工具。通过API模拟真实调用,对响应延迟、稳定性、吞吐量进行量化;通过特定脚本生成的题库,批量测试模型的正确率和鲁棒性;通过人机互动场景,记录模型在多轮对话中的上下文衔接能力。每个维度下的测评结果会自动记录并由评测团队讨论校验,以减少个人偏差或随机误差。
3. 加权投票机制
CSDN平台拥有众多开发者和技术爱好者。本次测评利用社区投票的方式,为各模型在不同维度上的表现分配不同权重。比如在“内容生成能力”上,有写作爱好者和新媒体创作者给予投票;在“数学与推理能力”上,则吸收了更多数学专业师生和算法研究者的意见,从而使得最终综合排名更能代表现实应用中的优先需求。
五、主要榜单与排名亮点
本次测评形成了多个领域的榜单。以下为关键领域的排名简要结果和分析:
1. 数学与推理能力排行
模型 | 参数 | 开源 | 所属 | 评分 |
gamma2 | 9B | 是 | | 35 |
llama3.1 | 8B | 是 | Meta | 9 |
llama3.2 | 3B | 是 | Meta | 24 |
GLM4 | 9B | 是 | 清华大学 | 38 |
teleAI | API | 是 | 中国电信 | 53 |
qwen2.5 | 7B | 是 | 阿里 | 59 |
文心一言 | API | 否 | 百度 | 60 |
gpt-o | API | 否 | OpenAI | 65 |
在此领域中,**gpt-o(OpenAI)与文心一言(百度)**在高难度题目中具有更稳定的正确率与推理深度。然而,在可本地部署(参数低于10B)并开源的选择中,**qwen2.5(阿里)与teleAI(中国电信)**表现较为亮眼。
2. 通用知识类测试
模型 | 参数 | 开源 | 所属 | 评分 |
gamma2 | 9B | 是 | | 41 |
llama3.1 | 8B | 是 | Meta | 23 |
llama3.2 | 3B | 是 | Meta | 13 |
GLM4 | 9B | 是 | 清华大学 | 70 |
teleAI | API | 是 | 中国电信 | 41 |
qwen2.5 | 7B | 是 | 阿里 | 49 |
文心一言 | API | 否 | 百度 | 59 |
gpt-o | API | 否 | OpenAI | 69 |
在模拟语言考试、逻辑与批判性思维测试中,**GLM4(清华大学)与gpt-o(OpenAI)**展现了较高的知识面广度和推断严谨性。
3. 指令生成能力测试
模型 | 参数 | 开源 | 所属 | 评分 |
gamma2 | 9B | 是 | | 65 |
llama3.1 | 8B | 是 | Meta | 65 |
llama3.2 | 3B | 是 | Meta | 49 |
GLM4 | 9B | 是 | 清华大学 | 72 |
teleAI | API | 是 | 中国电信 | 66 |
qwen2.5 | 7B | 是 | 阿里 | 75 |
文心一言 | API | 否 | 百度 | 87 |
gpt-o | API | 否 | OpenAI | 83 |
在主流编程语言(Python、Java、C++)的指令输出和软件开发流程支持上,**文心一言(百度)与gpt-o(OpenAI)表现领先,展现了强大的代码生成与算法实现能力。开源可本地部署的qwen2.5(阿里)**同样具有较高的竞争力。
4. 内容生成能力测试
模型 | 参数 | 开源 | 所属 | 评分 |
gamma2 | 9B | 是 | | 71 |
llama3.1 | 8B | 是 | Meta | 77 |
llama3.2 | 3B | 是 | Meta | 64 |
GLM4 | 9B | 是 | 清华大学 | 71 |
teleAI | API | 是 | 中国电信 | 93 |
qwen2.5 | 7B | 是 | 阿里 | 88 |
文心一言 | API | 否 | 百度 | 93 |
gpt-o | API | 否 | OpenAI | 96 |
创意写作、学术写作与技术文档编写测试结果显示,**gpt-o(OpenAI)**在细腻度与逻辑性方面拔得头筹;**文心一言(百度)与teleAI(中国电信)**在文风多样性与信息组织上得分同样不俗,特别适合创意型写作和内容生产领域。
5. 安全与对齐测试
模型 | 参数 | 开源 | 所属 | 评分 |
gamma2 | 9B | 是 | | 74 |
llama3.1 | 8B | 是 | Meta | 74 |
llama3.2 | 3B | 是 | Meta | 56 |
GLM4 | 9B | 是 | 清华大学 | 93 |
teleAI | API | 是 | 中国电信 | 90 |
qwen2.5 | 7B | 是 | 阿里 | 92 |
文心一言 | API | 否 | 百度 | 97 |
gpt-o | API | 否 | OpenAI | 76 |
在伦理决策、社会责任与文化敏感性三个层面进行综合测评后,**文心一言(百度)**取得最高分,在对不当信息过滤、跨文化场景输出时都有较为稳健的表现。**GLM4(清华大学)与qwen2.5(阿里)**同样展现了较高的合规性与包容度。
6. 小样本学习能力测试
模型 | 参数 | 开源 | 所属 | 评分 |
gamma2 | 9B | 是 | | 65 |
llama3.1 | 8B | 是 | Meta | 52 |
llama3.2 | 3B | 是 | Meta | 53 |
GLM4 | 9B | 是 | 清华大学 | 65 |
teleAI | API | 是 | 中国电信 | 85 |
qwen2.5 | 7B | 是 | 阿里 | 83 |
文心一言 | API | 否 | 百度 | 92 |
gpt-o | API | 否 | OpenAI | 65 |
针对“快速学习”“知识迁移”与“持续学习与适应”等指标进行评估后发现,**文心一言(百度)**再度位居前列,对于短期内的新知识、新领域具备较强的理解和吸收能力。**teleAI(中国电信)与qwen2.5(阿里)**表现同样值得关注,能在小样本环境下持续提升性能。
六、应用场景投票与综合排名
本次测评还针对典型应用场景展开投票收集,包括知识问答与新知学习、公文撰写、新闻自媒体文稿撰写、解题阅卷(数学、科学)、智能体(Agent)开发以及客服和知识库等应用方向。通过对各场景需求的权重计算,最终得到各模型在结合用户实际投票偏好的综合得分。结果显示:
- 文心一言(百度) 以 306662 的综合得分位居榜首。
- qwen2.5(阿里) 紧随其后,综合得分为 282566。
- teleAI(中国电信)也丝毫不让综合得分280032。
gpt-o(OpenAI)、GLM4(清华大学) 等也获得了相对较高的综合分数,在不同应用场景中各有优势。
这一结果说明,对于文字内容创作、公文撰写、新闻自媒体等应用关注度较高的场景,百度的文心一言由于在内容生成能力、安全对齐和小样本学习上均保持领先,因此在权重分配下获得了最高的综合评分。同时,也凸显了其他开源且可本地部署模型对于不同垂直场景的潜力,如qwen2.5(阿里)在指令生成与可扩展性方面、teleAI(中国电信)在多语言与小样本学习方面均有可圈可点之处。
七、使用场景深度解析
- 知识问答、新知学习:通用知识类测试与小样本学习能力是决定在快速信息获取、在线学习系统中的关键指标。
- 公文撰写:内容生成能力和安全与对齐的能力直接影响公文合规性与准确度。
- 新闻、自媒体文稿撰写:创意写作与安全对齐,对保证文章新颖性与不触碰敏感内容都至关重要。
- 解题、阅卷、批改作业(数学、科学):通用知识类和数学推理能力是核心。
- 智能体(agent 开发):对于能够自动完成复杂指令序列、实现跨系统交互的大模型来说,指令生成能力尤其重要。
- 客服、知识库:要求模型在通用知识和安全对齐方面都有持续且稳定的发挥。
这些场景的投票数既反映了用户的关注点,也为未来大模型优化与发展指明了方向。
八、对未来新出模型的评测愿景
技术的进步没有止境,新的大模型也在不断涌现。本次评测中虽未对诸如“慢推理模式(Slow Reasoning Mode)”“deepseek” 等新型模型或新模式进行全面的测评,但CSDN开源与智能技术创新研究院对这些新兴的探索方向充满期待,并计划在后续的榜单更新中纳入更多前沿模型和思路:
- 慢推理模式(Slow Reasoning Mode):在时延容忍度较高的场景中,可以进行更深层次的推理和考量,如在复杂领域进行多步演绎或进行跨学科关联。本模式有望在科学研究、医学诊断、法律咨询等领域产生重大影响。
- Deepseekv3:号称在深度理解与知识检索环节进行了重大创新,能够更全面地整合跨领域知识。若能平衡速度与信息覆盖深度,将有助于大模型在专业检索和新知学习领域的表现提升。
- 多模态融合模型:随着语音、图像、视频等多模态数据的爆炸式增长,能够在多模态场景提供高质量理解与输出的模型将成为下一轮竞争的焦点。CSDN开源与智能技术创新研究院将进一步升级测评工具,引入多模态数据集,以评估模型在更真实、更复杂的环境下的综合实力。
- 持续迭代与榜单更新:大模型技术迭代速度极快,新的算法、新的硬件架构和新的训练策略层出不穷。为确保榜单的及时性和准确性,CSDN开源与智能技术创新研究院将每隔一段时间对各模型进行动态测评,并邀请更多社区用户与合作伙伴参与数据反馈、共同完善测评标准。除了现有的数学推理、内容生成、指令生成、安全对齐等维度外,后续还将探索更多维度,如创意艺术表达、情感与社交交互、编程与代码生成功能等。
九、测评总结与对行业的启示
通过本次大规模、多维度、场景化的综合测评,我们可以清晰地看到不同大模型在不同领域中的各自优势和短板。无论是注重可本地部署和开源性的qwen2.5、teleAI 、llama3.1等,还是在API模式下持续创新的文心一言、gpt-o等,都在不断演进。对于使用者而言,有效地匹配自身需求与模型特性,才是获得最佳应用价值的关键。
更重要的是,本次测评不仅仅是给出一个静态的排行,而是通过场景投票和专业评审,形成了贯穿多个行业场景的实践经验与技术洞见。它充分证明了“基于社区力量、专家团队与自动化评测相结合”的方式,能够快速适应AI行业高速发展的环境。同时也体现了中小企业和个人开发者对于模型落地可行性与实用性能的迫切需求。未来,随着慢推理模式、deepseek新模型以及更多前沿技术的出现,CSDN开源与智能技术创新研究院也将不断更新并扩展测评维度,让用户在第一时间掌握最新、最有价值的大模型资讯与应用方案。
十、展望未来:持续优化与合作共赢
大语言模型的技术演进离不开多方协同。CSDN开源与智能技术创新研究院也呼吁更多高校、科研机构、企业和社区开发者加入测评生态,共同提升测评标准与工具链的先进性、准确性与公正性。未来,我们将继续坚持“场景化+多维度+持续更新”的测评策略,深入探索大模型在人机协作、智能决策、多模态理解等领域的潜能。无论是传统知识领域还是前沿学术研究,都期待更多大模型的崛起和参与,为人类社会带来更高效率、更强创造力的合作伙伴。
在这个瞬息万变的时代,谁能洞察最新技术并作出灵活应用,谁就能在数字化浪潮中占得先机。我们相信,“测评”本身不仅仅是一次时点上的表现记录,更是对技术演进趋势的一次深度捕捉。随着后续慢推理模式、deepseek等新模型的引入,以及对多模态、跨领域能力的进一步挖掘,相信在下一阶段的大模型测评榜单上,我们将看到更多惊喜与革新。
CSDN开源与智能技术创新研究院也诚挚地邀请所有有志于大模型研究、应用和评测的机构和个人参与我们的下一轮测评合作。让我们以专业的评测方法、广泛的社区支持和持续的更新机制,一同见证大语言模型从“展现知识与能力”向“改变生产与生活模式”的飞跃!
媒体联络与合作:如有意与CSDN开源与智能技术创新研究院开展大模型测评、技术合作、数据分享或其它形式的行业交流,欢迎通过官网或CSDN平台联系。让我们携手,共同推动智能时代的创新与发展!