在如今这个快速发展的软件开发时代,AI 工具如 Copilot、Claude 和 GPT 无疑大大提升了开发效率,但它们也带来了深刻的挑战。许多初级开发者依赖这些工具快速生成代码,却忽视了对代码背后原理的深刻理解。这种依赖虽然让开发者在短期内更高效,但也让我们失去了以往通过解决问题积累的基础知识和思考能力。本文将探讨我们如何在 AI 工具带来的便利与深度理解之间找到平衡,并提出了一些行之有效的解决方法,帮助开发者在享受效率提升的同时,保持技术成长的深度。
原文链接:https://nmn.gl/blog/ai-and-learning
作者 | Namanyay 责编 | 苏宓
出品 | CSDN(ID:CSDNnews)
有件事一直困扰着我,我觉得我需要和新开发者聊一聊。
如今软件开发的发展正处于一个奇怪的拐点。我与每一个初级开发者交流时都能发现,他们的 Copilot、Claude 或 GPT 都在 24/7 不停地工作。他们的代码交付速度比以往更快。但当我深入了解他们对自己交付的代码的理解时,问题就出现了。
当然,他们交付的代码确实可以正常工作,但如果问他们为什么用这样的方式写代码而不是另一种方式呢?现场一片寂静。如果问到代码边界情况呢?一双双茫然的眼神。
曾经很多人通过解决问题而逐渐积累基础知识,现在这种情况基本消失了。
我们把对问题的深度理解换成了快速修复,虽然当下感觉很好,但我们以后会为此付出代价。
回想一下我们曾经必须真心思考的日子
我最近意识到,新生代的程序员们甚至不知道 StackOverflow 是什么。
回想当年,调试编程问题的方式完全不同。那时候,“Claude”不是一个聊天机器人,而是信息熵的发明者。
首先,你得在 Google 上搜索问题。然而希望能找到一个有类似问题的人。如果找到了,你可能会在一个叫“StackOverflow”的网站上看到详细的回答,通常这些回答会非常透彻,但也常常带点“老专家”的口气。
这是我 12 年前提的一个问题(https://stackoverflow.com/questions/12227594/what-is-the-difference-between-unary-plus-numberx-and-parsefloatx)。看看当时获得高赞的 Nathan Wall 给出的最佳答案(他获得了超过 10,000 分,而且看起来自 2015 年以来一直是 CTO):
你能想象有一个人,自己花时间写出这么详细的答案吗?完全没有 AI 的帮助,还是免费提供解答的?
我的问题当然得到了非常详尽完善的解答,但他并没有就此止步。我从他的解答中学到了很多新知识。有些是我以前根本不知道的,还有些是我可能不太愿意知道的,但现在它们已经深深地刻在了我的脑海里。
如果你有问题,这就是最理想的情况。如果你碰到特别棘手的问题,却没有找到别人已经回答过,那就很难了。
现在的初级开发者真是轻松多了。他们只需要去 chat.com,复制粘贴错误信息。甚至更懒的直接不切换到浏览器,使用一个能一站式解决问题的工具。
方便又快捷。
但是,StackOverflow 有一个优点是 AI 做不到的:
阅读经验丰富开发者对你所问问题的讨论,是最好的学习方式。
来看看这个图表,帮助你理解我想要表达的意思:
速度 vs 知识
AI 能给你答案,但你得到的知识很浅显。而在 StackOverflow,你得读多位专家的讨论,才能真正了解全貌。虽然慢一些,但你不仅学会了什么有效,而且明白了为什么有效。
想想你认识的每个优秀开发者。他们是不是通过复制解决方案变得优秀的?不是——他们通过深入理解系统,理解其他开发者的思考方式走到了今天。这正是我们正在失去的东西。
我不是想做那个抱怨“现在的年轻人”的人。我每天也在用 AI 工具,甚至我自己还在做一个。但是我们需要诚实地面对,这种便利背后,我们到底失去了什么。
我们能做些什么?
我一直在尝试找出解决这个问题的方法(因为说实话,AI 不会消失)。以下是一些真的有效的做法:
首先,带着学习的心态使用 AI。当它给你答案时,深入询问它,问问为什么。没错,这样会花更多时间,但这正是重点所在。
接下来,找到你的圈子。Reddit、Discord、Mastodon——无论是在哪儿,聪明的人都在那里。那些地方才有真正的讨论,能让你产生“哇,我从来没这么想过”的感觉。
改变一下代码审查的方式。不要只看代码是否能运行,而是和团队展开对话。你们考虑过哪些其他方案?为什么选择了这个?把理解过程放在和结果一样重要的位置。
有时候从头开始构建东西。是的,AI 可以帮你生成认证系统。但先自己试着做一次吧。你可能写出更差的代码,但你会理解每一行代码的意义。这种知识是会积累的。
展望未来
现实是这样的:AI 带来软件开发加速已经开始,我们无法阻止。开源模型正在崛起,没多久我们就会拥有口袋里的 AGI。但这并不意味着我们就得让它让我们变成更差的开发者。
未来的问题不是我们是否使用 AI,而是我们如何使用它。也许,或许我们能找到一种方法,把 AI 的速度与我们需要的深度理解结合起来。
如果你有找到其他平衡的方法,也欢迎分享。无论如何,让我们一起搞明白这个问题。
推荐阅读:
▶M4芯片上跑Linux无望?Asahi Linux负责人辞职,抨击Linus领导失误、自述遭遇背叛
▶20万张GPU!号称“地球上最聪明的AI”Grok-3来了,斩获多个Top1,网友:算力消耗是DeepSeek V3的263倍
🚀 【大模型下半场,DeepSeek将如何改写规则?】
今晚20:00,CSDN高级副总裁李建忠带来《DeepSeek开启的大模型下半场战争》十日谈终结篇来了!
🔍 10个热点话题深度剖析!
DeepSeek如何重塑互联网格局?
与OpenAI、Google的国际竞争态势?
👉 预约直播,一起见证AI的未来走向!