决策树
文章平均质量分 55
丰。。
某top数据科学专业博士研究生,发表多篇论文,CCFA类2篇,sci2区一篇,目前担任sci2区文章审稿人,均为深度学习领域,第一作者,五次国际级获奖经历,国家级大创四项,多次省级校级获奖经历,负责多项科研项目。希望大佬们多多提携,小弟定投桃报李。
展开
-
决策树(Classification and Regression Trees, CART)part3分类准确程度的衡量-基尼系数(Gini index/Gini Impurity)/信息熵与分类
就是经济学上的基尼系数的那个概念以下部分内容引自百度百科基尼系数(英文:Gini index、Gini Coefficient)是指国际上通用的、用以衡量一个国家或地区居民收入差距的常用指标。基尼系数最大为“1”,最小等于“0”。基尼系数越接近0表明收入分配越是趋向平等。国际惯例把0.2以下视为收入绝对平均,0.2-0.3视为收入比较平均;0.3-0.4视为收入相对合理;0.4-0.5视为收入差距较大,当基尼系数达到0.5以上时,则表示收入悬殊。基尼指数最早由意大利统计与社会学家Corrado Gi原创 2021-02-26 17:35:13 · 1174 阅读 · 0 评论 -
决策树算法(Classification and Regression Trees, CART)part2将实际问题转换为决策树与多指标数据的处理
将实际问题转换为决策树例子:主题:是否是一只适合长期投资股票?1,是否体量大(市值高?)2,是否具有发展潜力(新兴产业,股东的组成)?3,是否长期趋势向好?然后最终结论:适合or不适合逐步处理多指标/维度数据每次选择一个可以判断(Y OR N )的条件,然后进行单一条件的决策树转换还是上面的例子假设我们经过调查,体量大的股票中,有50只适合长期投资,20只不适合,体量不大的股票中有10只适合长期投资,40只不适合然后再用是否具有发展潜力这一指标去判断,有发展潜力中的股票,有40只适合原创 2021-02-25 21:32:01 · 274 阅读 · 0 评论 -
决策树算法(Classification and Regression Trees, CART)part1引子与类型划分
引子假设现在我们在炒股,对于股票A,我们有两个选择,买入,或者不买入,然后过一段时间,A涨了,那么买入是正确的选择,不买入是没那么正确的选择这就是最简单的决策树类型划分同时我们也要注意到,决策树其实有许多不同的类型1,程度,还是上面股票的例子,假设我们已经买入A,然后A涨了,这个时候又有两种情况涨了,我们通过这个挣了好几万,那么这就是个明智的选择,涨了,我们挣了大概一百多,而如果我们去买跟A有关联的股票B能挣几千,那么这就是个不那么明智的选择2,单纯的对与错(就是引子中的内容)3,增加树的原创 2021-02-25 19:05:17 · 258 阅读 · 0 评论