神经网络补充
丰。。
某top数据科学专业博士研究生,发表多篇论文,CCFA类2篇,sci2区一篇,目前担任sci2区文章审稿人,均为深度学习领域,第一作者,五次国际级获奖经历,国家级大创四项,多次省级校级获奖经历,负责多项科研项目。希望大佬们多多提携,小弟定投桃报李。
展开
-
神经网络基础-神经网络补充概念-63-残差网络
残差网络(Residual Network,ResNet)是一种深度卷积神经网络结构,旨在解决深层网络训练中的梯度消失和梯度爆炸问题,以及帮助训练非常深的网络。传统的神经网络认为层与层之间是逐渐学习到更高级的特征表示的,但在实践中,增加层数可能会导致性能下降,这是因为深层网络在训练过程中可能会难以优化。ResNet 通过引入"跳跃连接"或"残差连接",使得网络可以学习残差(即原始特征)并将其添加到后续层的输出中,从而解决了这个问题。原创 2023-08-18 11:54:55 · 813 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-62-池化层
池化层(Pooling Layer)是深度学习神经网络中常用的一种层级结构,用于减小输入数据的空间尺寸,从而降低模型的计算复杂度,减少过拟合,并且在一定程度上提取输入数据的重要特征。平均池化(Average Pooling): 在平均池化操作中,对于每个池化窗口,输出的值是窗口内元素的平均值。平均池化也有助于降低数据的维度,但相较于最大池化,可能会丢失一些局部细节。最大池化(Max Pooling): 在最大池化操作中,对于每个池化窗口,输出的值是窗口内元素的最大值。原创 2023-08-18 11:52:39 · 2181 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-61-单层卷积网络
单层卷积网络是一种简单的神经网络结构,它仅包含一个卷积层,通常紧跟着一个激活函数以及可能的池化层和全连接层。这种结构可以用来提取输入数据的特征,适用于一些简单的任务。原创 2023-08-18 11:51:14 · 616 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-60-卷积步长
在深度学习中,卷积步长(convolution stride)是指在卷积操作中滑动卷积核的步幅。卷积操作是神经网络中常用的操作之一,用于从输入数据中提取特征。步长决定了卷积核在输入数据上的滑动间隔,从而影响输出特征图的大小。卷积步长的值可以是正整数,通常为1、2、3等。步长越大,卷积核滑动得越快,输出特征图的尺寸会减小。步长较大的卷积操作可以用来减少模型的计算复杂度和内存消耗,但可能会丢失一些细节信息。原创 2023-08-18 11:49:57 · 851 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-59-padding
在深度学习中,“padding”(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零),以调整输入数据的尺寸或形状,从而影响输出的尺寸。常见的填充方式包括 “valid”(无填充)、“same”(保持尺寸不变,使用零填充)和 “full”(完全填充,通常用于全卷积网络)。填充可以分为两种常见的类型:零填充(Zero Padding)和边界填充(Border Padding)。原创 2023-08-18 11:48:23 · 1190 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-58-端到端的深度学习
这种方法的核心思想是通过神经网络自动地学习适合任务的特征表示和映射,从而直接从原始数据中获得高级抽象的特征,最终实现任务的解决。端到端深度学习的优势在于简化了整个系统的设计和开发流程,减少了手工特征工程的工作量,并且通常能够在某些任务上取得更好的性能。然而,端到端深度学习也有一些限制和挑战,例如需要大量的数据来训练复杂的模型,模型的可解释性较差,以及在一些特定任务上可能会出现性能不如传统方法的情况。端到端优化:整个系统的优化过程是端到端的,神经网络可以直接在输入和输出之间进行学习,无需关心中间步骤。原创 2023-08-17 15:21:56 · 1498 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-57-多任务学习
在多任务学习中,不同任务之间可以是相关的,共享的,或者相互支持的,因此通过同时训练这些任务可以提供更多的信息来改善模型的泛化能力。多任务学习的优势在于可以通过共享模型参数和特征表示来促进任务之间的知识传递,从而加速模型训练,提高模型的泛化性能,减少过拟合,并能够从有限的数据中更有效地学习。迁移学习:多任务学习可以被视为一种特殊的迁移学习,其中任务之间的知识传递有助于提高目标任务的性能。相关任务:多个任务之间存在一定的相关性,通过同时学习可以提高任务间的共享信息。原创 2023-08-17 15:20:17 · 1163 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-56-迁移学习
迁移学习(Transfer Learning)是一种机器学习技术,旨在将在一个任务上学到的知识或模型迁移到另一个相关任务上,以提高新任务的性能。迁移学习的优势在于可以充分利用已有的数据和模型,从而在目标任务上减少数据需求,加快模型收敛速度,并提高模型的泛化能力。特征迁移:在源领域上训练的模型的特征表示,可以用于目标领域的任务。模型迁移:将源领域上训练的模型迁移到目标领域上,可以是整个模型或部分模型。领域自适应:通过在源领域和目标领域之间进行领域适应,从而提高模型在目标领域上的性能。原创 2023-08-17 15:18:26 · 1053 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-55-为什么是ML策略
根据问题的性质和数据特点,选择适合的模型结构是一种重要的ML策略。选择合适的ML策略可以帮助您更好地处理数据,从而获得更好的模型性能。评估和监控:选择合适的评估指标以及监控模型在训练和测试集上的性能变化是有效的ML策略,可以帮助您及时发现问题并进行调整。正则化和防止过拟合:过拟合是机器学习中常见的问题,通过选择适当的正则化方法和数据增强策略,可以降低模型的过拟合风险。问题适应性:不同的机器学习问题可能需要不同的策略。数据增强:对于数据量有限的情况下,采用数据增强策略可以生成更多样本,提高模型的泛化能力。原创 2023-08-17 15:17:15 · 1143 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-54-softmax回归
Softmax回归的主要思想是将原始的线性分数(得分)转化为类别概率分布,使得模型可以对多个类别进行分类。在Softmax回归中,每个类别都有一个权重向量和偏置项,将输入特征与权重相乘并添加偏置,然后通过Softmax函数将分数转化为概率。Softmax回归(Softmax Regression)是一种用于多分类任务的机器学习算法,特别是在神经网络中常用于输出层来进行分类。Softmax函数可以将一个K维的向量(K个类别的分数)映射成一个K维的概率分布。表示在给定输入x的情况下,样本属于第i个类别的概率,原创 2023-08-17 15:15:31 · 732 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-53-将batch norm拟合进神经网络
批归一化通过在每个批次内对输入进行标准化,使得激活函数的输入分布更稳定,从而减轻了梯度消失问题,使得梯度更容易传播,促进了训练过程的稳定性和效率。加速收敛:由于批归一化在每个批次内对输入进行了标准化,网络的参数可以更快地收敛到合适的范围,从而加速了训练的收敛速度。它通过对每个批次的统计信息进行标准化,减小了参数的更新幅度,从而减少了训练过程中的不稳定性。泛化能力提升:批归一化对输入数据的标准化可以使模型对不同尺度、分布的数据更具有鲁棒性,从而提高了模型的泛化能力,使其在测试数据上表现更好。原创 2023-08-17 15:13:37 · 1651 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-52-正则化网络的激活函数
激活函数的变种:一些激活函数的变种具有正则化的效果,例如 Leaky ReLU、Parametric ReLU(PReLU)、Exponential Linear Units(ELU)等。Dropout:虽然不是激活函数本身的正则化,但是 Dropout 是一种在训练过程中随机将一些神经元置零的技术,可以看作是对网络的激活函数进行正则化。Dropout 可以防止神经元之间的协同适应,减少过拟合。正则化是一种用于减少过拟合(overfitting)的技术,可以在神经网络的各个层次中应用,包括激活函数。原创 2023-08-17 15:11:01 · 983 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-51-局部最优问题
局部最优问题是在优化问题中常见的一个挑战,特别是在高维、非凸、非线性问题中。局部最优问题指的是算法在优化过程中陷入了一个局部最小值点,而不是全局最小值点。这会导致优化算法在某个局部区域停止,而无法找到更好的解。参数初始化策略:采用合适的参数初始化策略,如Xavier初始化、He初始化等,可以帮助降低陷入局部最优的风险。随机初始化:通过多次随机初始化模型参数,运行优化算法多次,以期望能够找到更好的初始点,从而避免陷入局部最优。多初始点策略:使用多个不同的初始点,运行优化算法多次,以期望找到更好的全局最优解。原创 2023-08-17 15:08:35 · 2265 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-50-学习率衰减
学习率衰减(Learning Rate Decay)是一种优化算法,在训练深度学习模型时逐渐减小学习率,以便在训练的后期更加稳定地收敛到最优解。学习率衰减可以帮助在训练初期更快地靠近最优解,而在接近最优解时减小学习率可以使模型更精细地调整参数,从而更好地收敛。指数衰减:使用指数函数来衰减学习率,例如每隔一定迭代步骤,将学习率按指数函数进行衰减。定期衰减:在训练的每个固定的迭代步骤,将学习率乘以一个衰减因子(通常小于1)。分段衰减:将训练过程分成多个阶段,每个阶段使用不同的学习率。原创 2023-08-17 15:06:05 · 1400 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-49-adam优化算法
Adam算法综合了动量(momentum)和均方梯度的移动平均(RMSProp)来更新模型参数。与传统的梯度下降法不同,Adam维护了一个每个参数的动量变量和均方梯度的移动平均变量,并在每个迭代步骤中使用这些变量来调整学习率。2初始化动量变量和均方梯度的移动平均:初始化动量变量为零向量,初始化均方梯度的移动平均为零向量。对动量变量和均方梯度的移动平均进行偏差修正,以减轻初始迭代的影响。5更新均方梯度的移动平均:计算均方梯度的移动平均。4更新动量变量:计算动量变量的移动平均。3计算梯度:计算当前位置的梯度。原创 2023-08-17 15:03:16 · 2070 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-48-rmsprop
RMSProp的核心思想是根据参数梯度的历史信息自适应地调整每个参数的学习率。具体来说,RMSProp使用指数加权移动平均(Exponential Moving Average,EMA)来计算参数的平方梯度的均值,并使用该平均值来调整学习率。2初始化均方梯度的移动平均:初始化一个用于记录参数平方梯度的指数加权移动平均变量,通常初始化为零向量。4计算均方梯度的移动平均:计算参数平方梯度的指数加权移动平均,通常使用指数加权平均公式。5更新参数:根据均方梯度的移动平均和学习率,更新模型的参数。原创 2023-08-17 14:58:17 · 1211 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-47-动量梯度下降法
动量梯度下降法(Momentum Gradient Descent)是一种优化算法,用于加速梯度下降的收敛速度,特别是在存在高曲率、平原或局部最小值的情况下。动量法引入了一个称为“动量”(momentum)的概念,它模拟了物体在运动中积累的速度,使得参数更新更具有惯性,从而更平稳地更新参数并跳过一些不必要的波动。动量梯度下降法可以帮助算法跳过较为平坦的区域,加速收敛,并减少参数在局部最小值附近的震荡。4更新速度:根据当前梯度和先前速度,计算新的速度。5更新参数:根据新的速度,更新模型的参数。原创 2023-08-17 14:53:30 · 1504 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-46-指数加权平均的偏差修正
指数加权平均(Exponential Moving Average,EMA)在初始时可能会受到偏差的影响,特别是在数据量较小时,EMA的值可能会与实际数据有较大的偏差。为了修正这种偏差,可以使用偏差修正方法,通常会将EMA的初始值初始化为第一个数据点,然后逐步修正。其中,t 表示当前时刻,x(t) 表示当前时刻的数据点,α 是平滑因子。在这个偏差修正版本的EMA中,当t=0时,直接将EMA初始化为第一个数据点。原创 2023-08-17 14:50:15 · 525 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-45-指数加权平均
指数加权平均(Exponential Moving Average,EMA)是一种平均方法,用于平滑时间序列数据或者计算变量的滚动均值。它对数据的权重分布呈指数递减,越靠近当前时刻的数据权重越高,越远离当前时刻的数据权重越低。其中,t 表示当前时刻,x(t) 表示当前时刻的数据点,α 是平滑因子(也称为衰减因子),通常取值范围在0到1之间。EMA(t-1) 表示上一时刻的指数加权平均。在每一步迭代中,都会计算新的EMA值,这样可以在数据流动过程中对数据进行平滑处理。原创 2023-08-17 14:44:56 · 557 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-44-minibatch梯度下降法
小批量梯度下降法(Mini-Batch Gradient Descent)是梯度下降法的一种变体,它结合了批量梯度下降(Batch Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)的优点。在小批量梯度下降中,每次更新模型参数时,不是使用全部训练数据(批量梯度下降)或仅使用一个样本(随机梯度下降),而是使用一小部分(小批量)样本。原创 2023-08-17 14:43:03 · 782 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-43-梯度下降法
梯度下降法可以分为多种变体,包括批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)和小批量梯度下降(Mini-Batch Gradient Descent)。它通过迭代地调整模型参数,沿着梯度方向更新参数,以逐步接近目标函数的最优解。参数更新:通过梯度下降公式,沿着梯度的反方向更新模型的参数。通常,随着迭代次数的增加,模型的损失逐渐减小,参数逐渐趋于收敛到最优值。计算梯度:计算损失函数对于模型参数的梯度(导数)。原创 2023-08-17 14:41:12 · 676 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-42-梯度检验
梯度检验(Gradient Checking)是一种验证数值计算梯度与解析计算梯度之间是否一致的技术,通常用于确保实现的反向传播算法正确性。在深度学习中,通过梯度检验可以帮助验证你的神经网络模型是否正确地计算了梯度,从而减少可能的错误。梯度检验的基本思想是使用数值近似来估计梯度,然后将数值梯度与解析梯度进行比较,如果它们之间非常接近,那么可以认为反向传播算法的实现是正确的。这是一个在调试和验证模型实现时常用的技术。假设你有一个简单的函数 f(x) = x^2,并且你想计算在某个点 x 处的梯度。原创 2023-08-17 14:38:39 · 864 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-41-梯度的数值逼近
梯度的数值逼近是一种用于验证梯度计算正确性的方法,它通过近似计算梯度来与解析计算的梯度进行比较。虽然数值逼近在实际训练中不常用,但它可以用来检查手动或自动求导的实现是否正确。原创 2023-08-17 01:36:06 · 1325 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-40-神经网络权重的初始化
Xavier 初始化(Glorot Initialization):Xavier 初始化是一种常用的权重初始化方法,特别适用于 sigmoid 和 tanh 等激活函数。神经网络权重的初始化是深度学习中的重要步骤,良好的权重初始化可以加速模型的训练收敛,提高模型的性能和稳定性。LeCun 初始化:LeCun 初始化是适用于 tanh 激活函数的权重初始化方法。He 初始化:He 初始化是适用于 ReLU 激活函数的权重初始化方法。随机初始化的目的是打破权重的对称性,使不同神经元可以学到不同的特征。原创 2023-08-16 11:08:39 · 796 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-39-梯度消失与梯度爆炸
梯度消失和梯度爆炸是在深度神经网络中训练过程中可能出现的问题,导致模型难以训练或无法收敛。这些问题与反向传播算法中的梯度计算有关。原创 2023-08-16 11:04:48 · 1095 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-38-归一化输入
归一化输入是一种常见的数据预处理技术,旨在将不同特征的取值范围映射到相似的尺度,从而帮助优化机器学习模型的训练过程。归一化可以提高模型的收敛速度、稳定性和泛化能力,减少模型受到不同特征尺度影响的情况。Robust 归一化:通过移除特征的中位数并缩放到一个固定的四分位范围,使得异常值不会对归一化结果产生太大影响。Min-Max 归一化:也称为线性归一化,将特征的取值范围映射到 [0, 1] 区间。Z-Score 归一化:也称为标准化,将特征的均值调整为 0,标准差调整为 1。原创 2023-08-16 11:01:43 · 740 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-37-其他正则化方法
L1 正则化(Lasso Regularization):L1 正则化通过在损失函数中添加参数的绝对值之和作为惩罚项,促使部分参数变为零,实现特征选择。适用于稀疏性特征选择问题。批标准化(Batch Normalization):批标准化是一种在每个小批次数据上进行标准化的技术,有助于稳定网络的训练,减少内部协变量偏移,也可以视为一种正则化方法。早停(Early Stopping):早停是一种简单的正则化方法,它通过在训练过程中监控验证集上的性能,并在性能不再改善时停止训练,从而避免模型过拟合训练数据。原创 2023-08-16 10:59:42 · 570 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-36-dropout正则化
它在训练过程中随机地将一部分神经元的输出置为零,从而强制模型在训练过程中学习多个独立的子模型,从而减少神经元之间的依赖关系,提高模型的泛化能力。训练阶段和预测阶段:在训练阶段,通过将部分神经元失活,Dropout 有助于防止神经元的过度依赖,从而减少过拟合。随机失活:在每个训练批次中,Dropout 随机地选择一些神经元,并将其输出设置为零。集成效应:由于 Dropout 训练了多个子模型,可以将它们合并起来形成一个集成模型,从而提高模型的性能和稳定性。原创 2023-08-16 10:57:56 · 770 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-35-为什么正则化可以减少过拟合
正则化可以减少过拟合的原因在于它通过限制模型的复杂性来约束参数的取值范围,从而提高了模型的泛化能力。过拟合是指模型在训练集上表现很好,但在未见过的数据上表现不佳,这通常是因为模型过于复杂,过多地拟合了训练数据中的噪声和细节,从而导致了泛化能力的下降。综上所述,正则化通过控制模型的复杂性,使其更加平滑和稳定,从而减少了对训练数据中噪声的过度拟合,提高了模型在未见过的数据上的泛化能力。正则化是防止过拟合的重要工具之一,在训练机器学习和深度学习模型时,合适的正则化方法可以帮助提升模型的性能和稳定性。原创 2023-08-16 10:55:58 · 928 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-34-正则化
L1 正则化(L1 Regularization):也称为 Lasso 正则化,它在损失函数中添加参数的绝对值之和作为惩罚项。在深度学习中,正则化方法通常通过在模型的层中添加正则化项来实现,例如在全连接层中添加 L1 或 L2 正则化。弹性网正则化(Elastic Net Regularization):是 L1 和 L2 正则化的结合,它综合了两者的优势,同时可以应对特征相关性较高的情况。其中,λ 是正则化参数,用于调节正则化的强度,θi 是模型的参数。原创 2023-08-16 10:54:17 · 835 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-33-偏差与方差
在实际机器学习中,我们通常希望找到适当的模型复杂度,以平衡偏差和方差之间的关系,从而实现良好的泛化能力。一个理想的模型应该具有适当的复杂度,能够在训练数据上进行合适的拟合,同时又不会过于敏感,可以较好地适应未见过的数据。Overfitting(过拟合):模型过于复杂,对训练数据的小变化非常敏感,导致在训练集上表现良好,但在测试集上表现不佳。通过调整模型的复杂度,我们可以在适当的范围内平衡偏差和方差,从而实现更好的泛化能力。减小偏差:增加模型的复杂度,使用更多的特征或更深的网络等,以提高模型的表达能力。原创 2023-08-16 10:48:40 · 749 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-32-神经网络与大脑
神经网络(Neural Networks)是受到生物神经系统启发而设计的机器学习模型,用于处理和学习复杂的数据模式。大脑通过突触的增强或减弱来学习,这涉及到更复杂的机制,如长时程依赖性和突触可塑性。规模和复杂性:生物大脑比神经网络复杂得多,拥有数十亿甚至更多的神经元和突触连接。层次结构:神经网络通常由多个层级组成,包括输入层、隐藏层和输出层,这种层次结构在某种程度上反映了大脑中的信息处理。神经元结构:神经网络的基本单元称为神经元,它由输入、权重、激活函数等组成,与生物神经元的结构有一定的类似性。原创 2023-08-16 10:46:14 · 948 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-31-参数与超参数
参数是模型内部学习的变量,通过训练过程自动调整。超参数是在训练之前设置的参数,直接影响模型的训练和性能表现。优化参数可以使模型更好地适应训练数据,而合适的超参数选择可以提高模型的泛化能力和性能。原创 2023-08-16 10:44:01 · 949 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-30-搭建神经网络块
搭建神经网络块是一种常见的做法,它可以帮助你更好地组织和复用网络结构。神经网络块可以是一些相对独立的模块,例如卷积块、全连接块等,用于构建更复杂的网络架构。原创 2023-08-16 10:40:46 · 891 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-29-为什么使用深层表示
迁移学习和预训练模型:深层表示学习的模型可以用于迁移学习,即将在一个任务上学到的特征表示应用于另一个任务。特征表示学习:通过多个隐藏层的堆叠,神经网络可以学习数据的多层次表示。表征学习:深度学习中的深层表示学习是一种表征学习(Representation Learning)方法,它有助于提取数据中的可解释、有用和抽象的信息,从而更好地理解数据。减少特征工程:传统机器学习方法通常需要手动设计特征工程,而深层神经网络可以自动从数据中学习到有用的特征表示,减少了手动特征工程的工作量。原创 2023-08-16 10:39:06 · 805 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-28-核对矩阵的维数
原创 2023-08-16 10:35:44 · 62 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-27-深层网络中的前向传播
将加权输入传递给激活函数,得到该隐藏层的激活值(输出)。返回预测值(输出层的输出)以及在计算过程中保存的缓存(各层的加权输入和激活值),这些缓存在反向传播中会用到。将当前隐藏层的输出作为下一隐藏层的输入,重复步骤 2,直到到达输出层。输出层的输出即为网络的预测值。将输入数据传递给网络的输入层。输入数据通常是一个特征矩阵,每一列代表一个样本,每一行代表一个特征。深层神经网络中的前向传播是指从输入数据开始,逐层计算每个神经元的输出值,直到得到最终的预测值。原创 2023-08-16 10:33:57 · 670 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-26-前向和反向传播
反向传播是神经网络中的梯度计算和权重更新过程,用于根据损失函数计算每个参数的梯度,然后根据梯度信息更新网络的权重和偏差。前向传播是神经网络中的正向计算过程,用于从输入数据开始,逐层计算每个神经元的输出值,直到得到最终的预测值。计算梯度:通过链式法则,从输出层开始,逐层计算每个参数的梯度,传递梯度至前一层。传递至下一层:将当前层的输出作为下一层的输入,重复步骤 2 和 3,直到达到输出层,得到最终的预测值。重复迭代:重复进行前向传播和反向传播,多次迭代,直到损失函数足够小或达到预定的迭代次数。原创 2023-08-16 10:28:18 · 1050 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-25-深层神经网络
深层神经网络(Deep Neural Network,DNN)是一种具有多个隐藏层的神经网络,它可以用来解决复杂的模式识别和特征学习任务。深层神经网络在近年来的机器学习和人工智能领域中取得了重大突破,如图像识别、自然语言处理、语音识别等。原创 2023-08-16 10:23:50 · 610 阅读 · 0 评论 -
神经网络基础-神经网络补充概念-24-随机初始化
当所有权重和偏差都被设置为相同的初始值时,神经网络的每个神经元在反向传播时会计算相同的梯度,导致网络无法学到不同的特征。为了避免这种情况,我们使用随机初始化,即为每个权重和偏差分配随机的小值。在神经网络的训练过程中,权重和偏差的初始值对模型的性能和训练过程的收敛速度都有影响。随机初始化是一种常用的权重和偏差初始值设置方法,它有助于打破对称性,避免网络陷入局部最优解。通常,随机初始化的原则是使用均匀分布或正态分布生成随机数,并根据网络的规模和结构来调整初始化的尺度。原创 2023-08-16 10:18:15 · 1065 阅读 · 0 评论