逻辑回归--正则化强度对精度的影响

本文探讨逻辑回归中正则项强度的选择,通过代码实验展示了L1和L2正则化对模型精度的影响。L1正则在强度超过0.20时,模型准确率下降;而L2正则的精度对强度变化不敏感,表明L1正则更易受到惩罚力度变化的影响。
摘要由CSDN通过智能技术生成

1、目的

在逻辑回归算法中需要有一个正则项,防止过拟合。那么我们如何确定正则项的强度呢,如何调整这个参数呢?可以通过一个代码来实现,下面我们分析一下该参数对L1正则和L2正则的影响

2、代码

from sklearn import datasets
import numpy as np
from sklearn.linear_model import LogisticRegression as LG
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from matplotlib import pyplot as plt


data=datasets.load_breast_cancer()
X_train,X_test,y_train,y_test = train_test_split(data.data,data.target,test_size=0.25,random_state=123)
C_list=np.linspace(0.1,1,19)
LG1_ac=[]
LG2_ac=[]
for i in C_list:
    LG_1=LG(penalty='l1',C=i,solver='liblinear',max_iter=1000)
    LG_2=LG(penalty='l2',C=i,solver='liblinear',max_iter=1000)

    LG_1.fit(X_train,y_train)
    LG_2.fit(X_train,y_train)

    LG1_ac.append(accuracy_score(LG_1.predict(X_test),y_test))
    LG2_ac
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值