64. Minimum Path Sum

 

64. Minimum Path Sum

Medium

175445FavoriteShare

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

Accepted

275,981

Submissions

559,273

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int m=grid.size();
        int n=grid[0].size();
        int dp[m][n]={};
        dp[0][0]=grid[0][0];
        for(int i=1;i<n;i++){//0行n列
        	dp[0][i]=dp[0][i-1]+grid[0][i];
        }
        for(int i=1;i<m;i++){//0列n行
        	dp[i][0]=dp[i-1][0]+grid[i][0];
        }
        for(int i=1;i<m;i++){//除了第一行和第一列之外的部分
        	for(int j=1;j<n;j++){
        		dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];
        	}
        }
        return dp[m-1][n-1];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值