线性判别分析LDA

LDA的思想

LDA算法是一种有监督的机器学习算法。LDA算法的思想是将数据投影到低维空间之后,使得同一类数据尽可能的紧凑,不同类的数据尽可能分散这句话是核心思想)。
在这里插入图片描述
在这里插入图片描述
上图提供了两种投影方式,哪一种能更好的满足我们的标准呢?
从直观上可以看出,右图要比左图的投影效果好,因为右图的黑色数据和蓝色数据各个较为集中,且类别之间的距离明显。左图则在边界处数据混杂。以上就是LDA的主要思想了,当然在实际应用中,我们的数据是多个类别的,我们的原始数据一般也是超过二维的,投影后的也一般不是直线,而是一个低维的超平面。

LDA的原理

二类LDA原理

假设我们的数据D={(x1,y1),(x2,y2),(x3,y3)…(xm,ym)};数据分为两类 yi={0,1};根据样本的分类,计算不同的均值 μi={μ0,μ1},μi是分类为i的均值;协方差也和均值一样,根据样本的分类,计算不同的协方差 ∑i={∑0,∑1},∑i是分类为i的协方差。

由于是两类数据,因此我们只需要将数据投影到一条直线上即可。
假设我们的投影直线是向量w,则对任意一个样本本xi,它在直线w的投影为wTxi,对于我们的两个类别的中心点μ0,μ1,在在直线w的投影为wTμ0和wTμ1。

由于LDA需要让不同类别的数据的类别中心之间的距离尽可能的大,也就是我们要最大化||wTμ0−wTμ1||22,同时我们希望同一种类别数据的投影点尽可能的接近,也就是要同类样本投影点的协方差wTΣ0w和wTΣ1w尽可能的小,即最小化wTΣ0w+wTΣ1w。
综上所述,我们的优化目标为:
在这里插入图片描述

另外,我们在定义两个矩阵
1.类内散度矩阵Sw为
在这里插入图片描述

2.类间散度矩阵Sb
在这里插入图片描述

将这些都整合起来我们要最大化的目标就是在这里插入图片描述

在这里插入图片描述
到了这里我们需要提到瑞利商(Rayleigh quotient)与广义瑞利商(genralized Rayleigh quotient)

这里的H表示转置T
在这里插入图片描述

然后我们接着看LDA
在这里插入图片描述

多类LDA原理

LDA vs PCA

LDA用于降维,和PCA有很多相同,也有很多不同的地方,因此值得好好的比较一下两者的降维异同点。

首先我们看看相同点:

1)两者均可以对数据进行降维。

2)两者在降维时均使用了矩阵特征分解的思想。

3)两者都假设数据符合高斯分布。

我们接着看看不同点:

1)LDA是有监督的降维方法,而PCA是无监督的降维方法

2)LDA降维最多降到类别数k-1的维数,而PCA没有这个限制。

3)LDA除了可以用于降维,还可以用于分类。

4)LDA选择分类性能最好的投影方向,而PCA选择样本点投影具有最大方差的方向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值