主成分分析(PCA)与线性判别分析(LDA)的区别与联系

本文对比了LDA(线性判别分析)与PCA(主成分分析)两种降维方法的异同。相同之处在于两者都能进行数据降维且使用了矩阵特征分解思想。不同之处包括LDA是有监督方法而PCA为无监督方法;LDA降维受限于类别数,PCA则没有此限制;LDA用于分类性能最佳的投影方向选择,而PCA则侧重于最大方差的方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LDA用于降维,和PCA有很多相同,也有很多不同的地方,因此值得好好的比较一下两者的降维异同点。

相同点:

1)两者均可以对数据进行降维。

2)两者在降维时均使用了矩阵特征分解的思想。

3)两者都假设数据符合高斯分布。

不同点:

1)LDA是有监督的降维方法,而PCA是无监督的降维方法

2)LDA降维最多降到类别数k-1的维数,而PCA没有这个限制。

3)LDA除了可以用于降维,还可以用于分类。

4)LDA选择分类性能最好的投影方向,而PCA选择样本点投影具有最大方差的方向。

这点可以从下图形象的看出,在某些数据分布下LDA比PCA降维较优。  在这里插入图片描述
当然,某些某些数据分布下PCA比LDA降维较优,如下图所示:
在这里插入图片描述

文章参考来源
https://www.cnblogs.com/pinard/p/6244265.html 线性判别分析LDA原理总结

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值