Given two binary trees, write a function to check if they are equal or not.
Two binary trees are considered equal if they are structurally identical and the nodes have the same value.
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
//两者均为空,视为相等
if(p==null && q==null) return true;
//任意一个为空或者不相等,视为不相等
if(p==null && q!=null || p!=null && q==null || q.val != p.val) return false;
//接着往下判断
return(isSameTree(p.left,q.left) && isSameTree(q.right,p.right));
}
}
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
/*
判断当前节点是否平衡,取决于左右子树的高度不相差1
如果root节点平衡,则继续判断左右子树是否平衡
【自底向下】,其实是重复遍历了2次,一次是取高度,一次是判平衡
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null) return true;
int LeftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
if(Math.abs(LeftHeight-rightHeight)>1) return false;
return (isBalanced(root.left)&&isBalanced(root.right));
}
private int getHeight(TreeNode root) {
if(root == null) return 0;
int LeftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
return 1+Math.max(LeftHeight,rightHeight);
}
}
/*
自下而上
子节点不平衡则返回高度-1
判断当前节点是否平衡,取决于:
左右子树都平衡且高度不相差1
返回信息包含高度以及平衡否,若不平衡则返回高度-1
只要有高度为-1则整个都肯定不平衡,全部返回-1
判断root高度是否为-1即可
*/
public class Solution {
public boolean isBalanced(TreeNode root) {
return getHeight(root) != -1;
}
private int getHeight(TreeNode root) {
if(root == null) return 0;
int LeftHeight = getHeight(root.left);
int rightHeight = getHeight(root.right);
if(LeftHeight == -1 || rightHeight == -1 || Math.abs(LeftHeight-rightHeight)>1)
return -1;
return 1+Math.max(LeftHeight,rightHeight);
}
}
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}"
means?
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean isSymmetric(TreeNode root) {
if(root == null) return true;
return isSymmetric(root.left,root.right);
}
private boolean isSymmetric(TreeNode left,TreeNode right) {
if(left == null && right == null) return true;
if((left ==null && right != null) || (left !=null && right == null) || (left.val != right.val)) return false;
return isSymmetric(left.left,right.right) && isSymmetric(left.right,right.left);
}
}
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all the values along the path equals the given sum.
For example:Given the below binary tree and
sum = 22
,
5 / \ 4 8 / / \ 11 13 4 / \ \ 7 2 1
return true, as there exist a root-to-leaf path 5->4->11->2
which sum is 22.
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
return pathSum(root,sum);
}
private boolean pathSum(TreeNode root,int sum) {
if(root == null) return false;
//判断是否为叶子节点且刚好找到sum
if(root.val == sum && root.left == null&& root.right == null) return true;
int value = sum - root.val;
return pathSum(root.left,value) || pathSum(root.right,value);
}
}
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given sum.
For example:Given the below binary tree and
sum = 22
,
5 / \ 4 8 / / \ 11 13 4 / \ / \ 7 2 5 1
return
[ [5,4,11,2], [5,8,4,5] ]
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
/*
Path Sum I可以做,Path Sum II就比较简单
难度在于数据的存储
对于非固定长度的,用stack来存储比较合适
注意:反转和push、pop
*/
public class Solution {
public List<ArrayList<Integer>> pathSum(TreeNode root, int sum) {
List<ArrayList<Integer>> list = new ArrayList<ArrayList<Integer>>();
getList(root,list,new Stack<Integer>(),sum);
return list;
}
private void getList(TreeNode root,List<ArrayList<Integer>> list,Stack<Integer> stack,int sum) {
if(root == null) return;
Integer key = root.val;
stack.push(key);
if(root.left == null && root.right == null && root.val == sum) {
Stack<Integer> s = (Stack<Integer>)stack.clone();
//特别note这个pop,push和pop永远是一对
stack.pop();
ArrayList<Integer> listItem = new ArrayList<Integer>();
while(!s.isEmpty()) {
listItem.add(s.pop());
}
//由于是栈,先进后出,则要重新排序,纠正回来
int len = listItem.size();
for(int i = 0;i<len/2;i++)
listItem.set(len-1-i, listItem.set(i, listItem.get(len-1-i)));
list.add(listItem);
return;
}
getList(root.left, list, stack, sum-key);
getList(root.right, list, stack, sum-key);
stack.pop();
return ;
}
}
/*
自己想的的确比较烂
这个是个好方法
简洁明了
*/
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<List<Integer>> ret = new LinkedList<List<Integer>>();
dfs(root, sum, new LinkedList<Integer>(), ret);
return ret;
}
private void dfs(TreeNode node, int sum, List<Integer> currentPath, List<List<Integer>> result) {
if (node == null) {
return;
}
currentPath.add(node.val);
if (node.val == sum && node.left == null && node.right == null) {
result.add(new LinkedList<Integer>(currentPath));
}
else {
dfs(node.left, sum - node.val, currentPath, result);
dfs(node.right, sum - node.val, currentPath, result);
}
currentPath.remove(currentPath.size() -1);
return;
}
}