主成份分析图解

版权声明:如果此条博客对你有一丝的帮助,请留言支持一下博主。 https://blog.csdn.net/csuhoward/article/details/78673910

随机生成原始数据分布,共计300个点,服从正态分布。为了便于区分X方向和Y方向。使X方向服从均值为50,标准差为50的正态分布,Y方向服从均值为0,标准差为100的正态分布。
这里写图片描述
手动旋转θ=45度。先构建旋转矩阵rot,可以在wiki中找到rot矩阵的定义

rot=[cos(θ),sin(θ);sin(θ),cos(θ)]

然后执行选择操作,X=rotX,得到旋转45度后的分布
这里写图片描述
到了求主成份的时候了。先求协方差矩阵c=XXT。然后分解协方差矩阵,求得特征值d和特征向量e,这一步可以借用matlab的eig函数求解。特征向量e就是两个主成份方向,我们用rotX=eX得到X旋转后主成份正交(???)时的分布形态。看,又旋转回来了。只不过X方向正负对调了。
这里写图片描述

启发:

1.主成份的特征向量可以起到旋转的作用;

2.在二维平面中,旋转矩阵其实就是新定义的两个特征向量的方向,不用死记,画个图就记住了。

怎样理解下图呢?先求X方向的变化,就把下面的矩形框中cosθsinθ填到旋转矩阵的第一列中,然后把右边的矩形框中的sinθcosθ先到第二列中。

rot=[cos(θ),sin(θ);        sin(θ),cos(θ)]

先记录X方向,再记录Y方向,所以填入矩阵的顺序是
cos(θ),sin(θ),sin(θ),cos(θ)

这里写图片描述
这个图是偏理解,理解这个图之后,就记住旋转向量了,同时也就知道的特征向量的作用。

展开阅读全文

没有更多推荐了,返回首页