之前介绍过求解最大流的一种方法:Ford - Fulkerson 算法,大多数情况下这个算法已经足够高效了,但当顶点数或最大流流量非常大时,这个算法就显得不够快了。事实上,与其守着一个算法过日子,不如多学几个,万一用到了就赚了,介绍一下实现起来比较简单,实际运行也比较快速的 Dinic 算法。
Ford-Fulkerson 算法是通过深度优先搜索寻找增广路,并沿着它增广。与之相对,Dinic 算法总是寻找最短的增广路,并沿着它增广。
因为最短增广路的长度在增广过程中始终不会变短,所以无需每次都通过宽度预先搜索来寻找最短增广路。我们可以先进行一次宽度优先搜索,然后考虑由近距离顶点指向远距离顶点的边所组成的分层图,在上面进行深度优先搜索寻找最短增广路。简单来说
我们先用 BFS 遍历所有的点,目的是记录下每个节点的深度,即从 s 到每个节点的距离。(这个数组之后会有用处)注意这个过程中,已满流的边无需访问。
然后是一遍 DFS,也是从 s 出发。我们不走 " 同级 " 的,即深度必须是递增的序列(用到之前的数组),否则会走 " 回头路 "(会慢)。对于一个节点,需要将其上级分配过来的流量,分配给下级,注意不能超过下级的容量。如果给了下级流量,却没有用,说明下次无需访问这个节点了。这样每走到 t,就相当于找到一条增广链了,可以退回去接着找。
重复以上操作(一遍 BFS+DFS),即可求出最大流。该算法在实
际应用中速度非常快,很多时候即便图的规模比较大也没有问题。
引用别人家的图片来说明Dinic为什么高效
https://blog.csdn.net/zhouzi2018/article/details/81865934?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task
对如下的一个图
很容易可以得到,最大流是2*999,但是如果我们执行Ford - Fulkerson 算法,程序很有可能呈现出下面一个状态
而下一次增广时
这个过程非常的低效,而对于Dinic算法而言,我们使用了分层图,保证在寻找增广路径的过程中,下一个点一定出现在下一层,因此很快就能得到答案。
代码模板
#include<iostream>
#include<cmath>
#include<string.h>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<iomanip>
using namespace std;
#define ll long long
#define vec vector<ll>
#define arr vector<vec>
#define inf 19270817
#define MaxV 1000
struct edge {
ll to, cap, rev;//重点,容量,反向边
edge(ll a, ll b, ll c) { to = a, cap = b, rev = c; }
};
vector<edge> G[MaxV];
ll level[MaxV];//i节点对应的层次
ll iter[MaxV];//当前弧,在其之前的边已经没有用了。
void addEdge(ll from, ll to, ll cap) {
G[from].push_back(edge(to, cap, G[to].size()));
G[to].push_back(edge(from, 0, G[from].size() - 1));
}
// 通过BFS计算从源点出发的距离标号
void bfs(int s) {
memset(level, -1, sizeof(level));
queue<ll> que; level[s] = 0; que.push(s);
while (!que.empty()) {
ll v = que.front; que.pop();
for (unsigned i = 0; i < G[v].size(); i++) {
edge & e = G[v][i];
if (e.cap > 0 && level[e.to] == -1) {//不是反向边,还没有判断过,level也起visited的作用
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
// 通过DFS寻找增广路
ll dfs(ll v, ll t, ll f) {
if (v == t) return f;
//&i 是为了不断修改iter[v]的值,避免对无用边进行检查
for (ll &i = iter[v]; i < G[v].size(); i++) {
edge & e = G[v][i];
if (e.cap > 0 && level[e.to] > level[v]) {
ll d = dfs(e.to, t, min(e.cap, f));
if (d > 0) {
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
ll maxFlow(ll s, ll t) {
ll flow = 0;
while (1) {
bfs(s);
if (level[t] < 0) return flow;//压根不连通
memset(iter, 0, sizeof(iter));
ll f;
while ((f = dfs(s, t, inf) > 0)) flow += f;
}
}