题目
给定N个整数组成的数列(N<=35),从中选出一个子集,使得这个子集的所有元素的值的和的绝对值最小,如果有多组数据满足的话,选择子集元素最少的那个
思路
看到与数列的和有关,思考一下可不可以尺取,发现不需要求连续数列,此时很难构造一个具有单调性的符合题意的数组供尺取法使用(欢迎有大佬指正)。在思考一下,好像也可以用二分搜索,把这个绝对值作为目标值,但是每个整数 1 0 15 10^{15} 1015,而且当 m i d mid mid不能作为最小绝对值,不代表 m i d − 1 mid-1 mid−1不行,比如 20 , − 100 , 100 20,-100,100 20,−100,100, 10 10 10不能作为最小绝对值,但是 0 0 0却可以,解决方法是每次判断 x x x能否作为最小绝对值时使用小于的关系,即是否存在一个序列值和的绝对值小于 x x x,However,这样做好像又多此一举了,如果能找到一个序列值的绝对值之和小于 x x x,那么我为啥不直接找到绝对值之和最小的序列呢?所以二分法分的有些鸡肋,一遍其实就可以求解。
当然 2 35 2^{35} 235也不能直接枚举,卡的死死的,和枚举有关的问题,由于数据范围太大不能求解的,都可以考虑一下折半枚举。对每一个输入的 n n n,我们将数组 a [ n ] a[n] a[n],拆分成两个部分 [ 1 , n 2 ) , [ n 2 , n ) [1,\frac{n}{2}),[\frac{n}{2},n) [1,2n),[2n,n),
- 先对第一个区间进行枚举,使用整数表示集合,将所有可能的和与相对应的元素个数存入 m a p map map,同时每遍历一个组合,就比较其是否比当前结果更优,如果是则更新结果。
- 然后对第二个区间进行枚举,每枚举出一种组合的和 s u m sum sum,比较更新结果。然后使用map内置的 l o w e r _ b o u n d lower\_bound lower_bound函数,在第一个区间里找到比 − s u m -sum −sum大的最小元素,判断该元素与 s u m sum sum相加是否能构成更好的解。此时不能忘了,我们还要看比 − s u m -sum −sum小的最大元素,同样判断这种情况是否能构成更好的解。
- 我们是否需要对前半个区间取空集或者后半个区间取空集进行特判呢?好像没有关注过的样子?答案是不需要。因为我们无论是在前后区间进行枚举的时候,一旦找到一个 s u m sum sum值,就会判断它的绝对值是否比当前最优解更小,如果此时更新了结果值,也就是说我们只在单个区间里取了这些个元素,另一个区间根本没有枚举。已经考虑了空的情况。
tips:记得每次将map clear
#include<iostream>
#include<iomanip>
#include<vector>
#include<algorithm>
#include<map>
#include<queue>
#include<string.h>
#include<math.h>
using namespace std;
#define ll long long
#define inf 1e9
#define MAX 100000
#define pair pair<ll , ll>
#define abs(x) ((x)>=0?(x):-(x))
ll n, a[40];
pair ans;
map<ll, ll > p;//value-》len
map<ll, ll>::iterator it;
void solve() {
//折半枚举
for (ll i = 1; i < (1 << (n / 2)); i++) {//枚举前(n/2)位
ll t = i, sum = 0, len = 0;
for (ll j = n / 2 - 1; j >= 0; j--) {
if (t&(1 << j)) { sum += a[j]; len++; }
}
ll tmp = abs(sum);
if (tmp < ans.first || (tmp == ans.first&&len < ans.second))
ans = make_pair(tmp, len);
p[sum] > 0 ? p[sum] = min(p[sum], len) : p[sum] = len;
}
for (ll i = 1; i < (1 << (n - n / 2)); i++) {//枚举后(n/2)位 考虑空集
ll t = i, sum = 0, len = 0;
for (ll j = n - 1; j >= n / 2; j--) {
ll v = j - n / 2;
if (t&(1 << v)) { sum += a[j]; len++; }
}
ll tmp = abs(sum);
if (tmp < ans.first || (tmp == ans.first&&len < ans.second))
ans = make_pair(tmp, len);
it = p.lower_bound(-sum);
if (it != p.end()) {//这是一个最接近他的大于它的相反数的元素
ll val = abs((*it).first + sum), l = (*it).second + len;
if (ans.first > val || (ans.first == val && l < ans.second)) {
ans.first = val; ans.second = l;
}
}
if (it != p.begin()) {//这是一个最接近他的小于它的相反数的元素
it--;
ll val = abs((*it).first + sum), l = (*it).second + len;
if (ans.first > val || (ans.first == val && l < ans.second)) {
ans.first = val; ans.second = l;
}
}
}
cout << ans.first << " " << ans.second << endl;
return;
}
int main(){
while (cin >> n) {
if (n == 0) return 0;
p.clear();
for (ll i = 0; i < n; i++) { cin >> a[i];}
ans = make_pair(abs(a[0]), 1);
solve();
}
}