(这个多年前的文章发现一直未通过,现在修改一下再补发出来)
【分析】:
提示:在正文下方,附了几个数据
这道题可以用求强连通分量做。因为根据题意,只需确定询问的第一个人是否为杀手,若第一个人为杀手,那么在题干规则下police直接被杀,若不是,那么police在游戏结束前不可能被杀<题中“根据最优的情况”说明>。
首先将每个关系<x认识Y>记为边x-y存在,然后对这些边组成的图进行Tarjan求强连通分量<或者其他求强连通分量的方法>,将每个强连通分量看成一个点,记录该强连通分量的入度。然后将入度为0的强连通分量的数目记录下来,表示要访问的最小快数,这样样例是可以过得。但为了能过下面的数据,若存在入度为0并且强连通分量的大小为1的强连通分量,那么我们访问的块数就要减1。但是这样就过不了样例了,减1的目的是为了排除这种情况:除了某一块没访问完其他的都访问过。若不加减1就会将最后没访问的那一个块访问,事实上是不必的,因此需减1,但是如不加条件的减1,那么样例就会过不了,因此减1时需加上前提条件:我访问的块数是否大于1,这样,所有数据都能过了、
【数据】:
3 1
1 2 ans:0.666667
5 8
1 2
2 1
2 3
3 2
3 4
4 3
1 4
4 1 ans:0.800000
8 8
1 2
2 3
3 4
4 1
1 5
5 6