BZOJ 2438 [中山市选2011] 杀人游戏 题解与分析

该博客详细分析了中山市选2011年的杀人游戏问题,利用求强连通分量的方法解决。通过记录强连通分量的入度,确定最少访问的块数,并在特定条件下减少1来处理特殊情况,确保所有数据都能通过。文章附带了样例数据和解决方案。
摘要由CSDN通过智能技术生成

(这个多年前的文章发现一直未通过,现在修改一下再补发出来)

 

【分析】:

        提示:在正文下方,附了几个数据

        这道题可以用求强连通分量做。因为根据题意,只需确定询问的第一个人是否为杀手,若第一个人为杀手,那么在题干规则下police直接被杀,若不是,那么police在游戏结束前不可能被杀<题中“根据最优的情况”说明>。

        首先将每个关系<x认识Y>记为边x-y存在,然后对这些边组成的图进行Tarjan求强连通分量<或者其他求强连通分量的方法>,将每个强连通分量看成一个点,记录该强连通分量的入度。然后将入度为0的强连通分量的数目记录下来,表示要访问的最小快数,这样样例是可以过得。但为了能过下面的数据,若存在入度为0并且强连通分量的大小为1的强连通分量,那么我们访问的块数就要减1。但是这样就过不了样例了,减1的目的是为了排除这种情况:除了某一块没访问完其他的都访问过。若不加减1就会将最后没访问的那一个块访问,事实上是不必的,因此需减1,但是如不加条件的减1,那么样例就会过不了,因此减1时需加上前提条件:我访问的块数是否大于1,这样,所有数据都能过了、

【数据】:

3 1
1 2   ans:0.666667

5 8
1 2
2 1
2 3
3 2
3 4
4 3
1 4
4 1   ans:0.800000

8 8
1 2
2 3
3 4
4 1
1 5
5 6

引用:中山市是一个不设区的地级市,它包含了6个街道和18个镇。其中,有石岐街道、东区街道、西区街道、南区街道、五桂山街道、火炬开发区街道等。 引用:根据描述,这个游戏是一个给定了起始位置和目标位置的移动游戏。在一个n * m的棋盘上,棋盘上有两种不同的格子,分别用#和@表示。小明每次可以向上、下、左、右四个方向移动一格,如果移动到相同类型的格子上,费用为0,否则费用为1。问题要求计算从起始位置移动到目标位置所需的最小花费。输入包含多组数据,每组数据的格式为:第一行是两个整数n和m,表示棋盘的行数和列数;接下来的n行每行包含m个格子;最后一行是四个整数x1、y1、x2、y2,表示起始位置和目标位置的坐标。当输入的n和m都为0时,表示输入结束。输出每组数据的最小花费,每组数据独占一行。 引用:根据样例输入和输出,可以看出其中一个示例的输入是2行2列的棋盘,棋盘上有两种格子@@和@#;起始位置是(0, 1),目标位置是(1, 0)。根据游戏规则,需要计算从起始位置到目标位置的最小花费。输出为2。 根据以上信息,中山市游戏之间没有直接关联。请问你是想了解中山市举情况吗?如果是的话,请提供更多的相关信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [不设区的地级市之中山市geoJSon可直接使用](https://download.csdn.net/download/weixin_36323996/12833075)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【中山市2009】【BZOJ2464】小明的游戏](https://blog.csdn.net/CreationAugust/article/details/48679593)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值