在人工智能领域,大型语言模型(LLM)的发展日新月异,但如何让这些模型更好地与外部数据源和工具进行交互,一直是技术瓶颈。MCP(Model Context Protocol,模型上下文协议)的出现,为这一问题提供了全新的解决方案。本文将详细介绍 MCP 是什么、它能做什么、以及如何使用它,帮助你更好地理解和应用这一前沿技术。
一、MCP 是什么?
(一)定义
MCP(Model Context Protocol)是由 Anthropic 公司推出的一种开放标准协议,旨在实现大型语言模型(LLM)与外部数据源和工具的无缝集成。它类似于网络中的 HTTP 协议或邮件中的 SMTP 协议,通过标准化模型与外部资源的交互方式,提升 LLM 应用的功能性、灵活性和可扩展性。
(二)核心概念
MCP 的核心是 模型上下文,即 LLM 在运行过程中所需的所有外部信息和工具。MCP 通过定义标准化的接口和协议,使 LLM 能够动态访问和集成以下内容:
- 外部数据源:如数据库、API、文档库等,为 LLM 提供实时或历史数据。
- 工具和服务:如计算工具、搜索引擎、第三方服务等,扩展 LLM 的功能。
- 上下文管理:动态维护 LLM 的对话上下文,确保连贯性和一致性。
(三)架构
MCP 的架构由四个关键部分组成:
- 主机(Host):期望从服务器获取数据的人工智能应用,如 IDE、聊天机器人等。
- 客户端(Client):主机与服务器之间的桥梁,负责消息路由、能力管理等。
- 服务器(Server):提供外部数据和工具的组件,如与 Gmail、Slack 的 API 调用。
- 基础协议(Base Protocol):定义了主机、客户端和服务器之间的通信规则。
(四)工作原理
MCP 通过定义标准化的数据格式和通信协议,实现 LLM 与外部资源的交互。它使用 JSON-RPC 2.0 作为消息格式,通过标准的请求、响应和通知消息进行通信。以下是其工作流程:
- 上下文请求:LLM 应用向外部资源发送请求,包含所需的数据或服务类型。
- 上下文集成:LLM 应用将外部资源返回的上下文数据集成到模型中,用于生成响应或执行任务。
- 上下文管理:MCP 支持动态管理 LLM 的对话上下文,确保多轮对话的连贯性。
二、MCP 能做什么?
(一)增强型问答系统
通过集成外部数据源,MCP 能够为 LLM 提供实时、准确的答案。例如,一个智能助手可以通过 MCP 访问维基百科等知识库,为用户提供更丰富的信息。
(二)智能助手
MCP 支持 LLM 动态访问和集成多种工具和服务。例如,一个智能助手可以通过 MCP 调用日历、邮件、Slack 等工具,帮助用户管理日程、发送邮件和协调团队。
(三)知识管理
MCP 可以通过集成文档库和数据库,为 LLM 提供专业领域的知识支持。例如,一个医疗领域的 LLM 可以通过 MCP 访问医学数据库,为医生提供诊断建议。
(四)多轮对话
MCP 支持动态管理 LLM 的对话上下文,确保多轮对话的连贯性。例如,在一个客服场景中,MCP 可以帮助 LLM 维护与客户的对话历史,确保每次响应都基于完整的上下文。
三、如何使用 MCP?
(一)环境准备
- 安装 Python:确保安装了 Python 3.9 或更高版本。
- 安装 uv:运行以下命令安装 uv:
curl -LsSf https://astral.sh/uv/install.sh | sh
- 创建项目:运行以下命令创建项目:
uv init weather
cd weather
uv venv
source .venv/bin/activate
uv add mcp httpx
(二)开发一个简单的 MCP Server
以下是一个简单的天气服务器示例:
- 导入包:
from typing import Any
import asyncio
import httpx
from mcp.server.models import InitializationOptions
import mcp.types as types
from mcp.server import NotificationOptions, Server
import mcp.server.stdio
- 设置实例:
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"
server = Server("weather")
- 实现工具列表:
@server.list_tools()
async def handle_list_tools() -> list[types.Tool]:
return [
types.Tool(
name="get-alerts",
description="获取指定州的天气预警",
inputSchema={
"type": "object",
"properties": {
"state": {
"type": "string",
"description": "两字母州代码(例如 CA、NY)",
},
},
"required": ["state"],
},
),
types.Tool(
name="get-forecast",
description="获取指定位置的天气预报",
inputSchema={
"type": "object",
"properties": {
"latitude": {
"type": "number",
"description": "位置的纬度",
},
"longitude": {
"type": "number",
"description": "位置的经度",
},
},
"required": ["latitude", "longitude"],
},
),
]
- 实现工具执行:
@server.call_tool()
async def handle_call_tool(
name: str, arguments: dict | None
) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
if not arguments:
raise ValueError("缺少参数")
if name == "get-alerts":
state = arguments.get("state")
if not state:
raise ValueError("缺少州参数")
state = state.upper()
if len(state) != 2:
raise ValueError("州代码必须是两位字母(例如 CA, NY)")
async with httpx.AsyncClient() as client:
alerts_url = f"{NWS_API_BASE}/alerts?area={state}"
alerts_data = await make_nws_request(client, alerts_url)
if not alerts_data:
return [types.TextContent(type="text", text="获取预警数据失败")]
features = alerts_data.get("features", [])
if not features:
return [types.TextContent(type="text", text=f"{state} 没有活跃的预警")]
formatted_alerts = [format_alert(feature) for feature in features[:20]]
alerts_text = f"{state} 的活跃预警:\n\n" + "\n".join(formatted_alerts)
return [
types.TextContent(
type="text",
text=alerts_text
)
]
elif name == "get-forecast":
try:
latitude = float(arguments.get("latitude"))
longitude = float(arguments.get("longitude"))
except (TypeError, ValueError):
return [types.TextContent(
type="text",
text="无效的坐标。请提供有效的纬度和经度数字。"
)]
if not (-90 <= latitude <= 90) or not (-180 <= longitude <= 180):
return [types.TextContent(
type="text",
text="无效的坐标。纬度必须在 -90 到 90 之间,经度在 -180 到 180 之间。"
)]
async with httpx.AsyncClient() as client:
lat_str = f"{latitude}"
lon_str = f"{longitude}"
points_url = f"{NWS_API_BASE}/points/{lat_str},{lon_str}"
points_data = await make_nws_request(client, points_url)
if not points_data:
return [types.TextContent(type="text", text=f"获取坐标 {latitude}, {longitude} 的网格点数据失败。此位置可能不受 NWS API 支持(仅支持美国位置)。")]
properties = points_data.get("properties", {})
forecast_url = properties.get("forecast")
if not forecast_url:
return [types.TextContent(type="text", text="未找到天气预报链接。")]
forecast_data = await make_nws_request(client, forecast_url)
if not forecast_data:
return [types.TextContent(type="text", text="获取天气预报失败。")]
periods = forecast_data.get("properties", {}).get("periods", [])
if not periods:
return [types.TextContent(type="text", text="未找到天气预报数据。")]
formatted_periods = [format_forecast(period) for period in periods[:5]]
forecast_text = "未来五天的天气预报:\n\n" + "\n".join(formatted_periods)
return [
types.TextContent(
type="text",
text=forecast_text
)
]
- 辅助函数:
async def make_nws_request(client: httpx.AsyncClient, url: str) -> dict | None:
try:
response = await client.get(url, headers={"User-Agent": USER_AGENT})
response.raise_for_status()
return response.json()
except httpx.HTTPError:
return None
def format_alert(alert: dict) -> str:
event = alert.get("properties", {}).get("event", "未知事件")
headline = alert.get("properties", {}).get("headline", "未知标题")
description = alert.get("properties", {}).get("description", "无描述")
return f"{event}: {headline}\n{description}"
def format_forecast(period: dict) -> str:
name = period.get("name", "未知时间段")
short_forecast = period.get("shortForecast", "未知预报")
temperature = period.get("temperature", "未知温度")
temperature_unit = period.get("temperatureUnit", "未知单位")
return f"{name}: {short_forecast}, 温度: {temperature}{temperature_unit}"
- 初始化和运行服务器:
@server.initialize()
async def handle_initialize(options: InitializationOptions) -> None:
print("服务器已初始化")
if __name__ == "__main__":
mcp.server.stdio.run(server)
(三)运行和测试
- 启动服务器: 在终端中运行以下命令启动服务器:
python server.py
- 测试工具: 使用支持 MCP 的客户端(如 Anthropic 的 Claude 或其他支持 MCP 的 LLM 应用)连接到你的服务器,并调用工具。例如,发送以下 JSON 请求:
{
"jsonrpc": "2.0",
"method": "call_tool",
"params": {
"name": "get-alerts",
"arguments": {
"state": "CA"
}
},
"id": 1
}
服务器将返回类似以下的响应:
{
"jsonrpc": "2.0",
"result": [
{
"type": "text",
"text": "CA 的活跃预警:\n\n地震预警: 加州地区可能发生地震,请注意安全。\n洪水预警: 北部地区可能发生洪水,请做好防范。"
}
],
"id": 1
}
四、MCP 的优势
(一)统一接口
MCP 提供了一种标准化的接口,使得 LLM 能够无缝连接到各种外部数据源和工具。无论是数据库、API 还是第三方服务,都可以通过 MCP 进行集成。
(二)降低集成成本
通过标准化的协议和接口,MCP 大大减少了开发和维护的工作量。开发者无需为每个数据源或工具编写特定的集成代码,只需遵循 MCP 的规范即可。
(三)双向通信**
MCP 支持双向通信,使得 LLM 不仅可以请求数据,还可以接收来自外部工具的实时更新。这使得交互更加动态和智能。
(四)高度扩展性**
MCP 支持多种传输层协议,包括 HTTP、WebSockets 等,适应不同的应用需求。开发者可以根据具体需求选择合适的传输协议。
(五)安全性与控制**
MCP 内置了安全机制,保护 API 密钥不被泄露,确保数据传输的安全性。同时,MCP 还提供了详细的日志和监控功能,帮助开发者更好地管理和优化系统。
五、MCP 的应用场景
(一)内容生成平台
通过集成多种数据源和工具,MCP 可以为内容生成平台提供丰富的数据支持。例如,一个新闻生成平台可以通过 MCP 访问实时新闻数据源,生成最新的新闻报道。
(二)医疗领域
在医疗领域,MCP 可以集成患者的病历、实验室检测系统和医学影像分析工具,为医生提供全面的诊断支持。例如,一个智能诊断系统可以通过 MCP 访问患者的病历和最新的检测结果,生成诊断建议。
(三)教育领域**
在教育领域,MCP 可以辅助教师进行个性化教学,生成多语言学习材料。例如,一个在线教育平台可以通过 MCP 访问教育资源库,为学生提供个性化的学习计划。
(四)金融领域**
在金融领域,MCP 可以协作完成市场趋势分析、投资报告生成和多语言客户支持。例如,一个金融分析平台可以通过 MCP 访问实时市场数据,生成投资建议。
(五)智能助手**
MCP 可以集成天气查询、新闻推送、日程管理等服务,为用户提供个性化的智能助手。例如,一个智能助手可以通过 MCP 访问天气 API,为用户提供实时天气信息。
(六)企业应用**
MCP 可以简化企业中 AI 与外部数据源和工具的集成,构建智能化的业务流程。例如,一个企业可以通过 MCP 集成内部数据库和外部 API,实现自动化的数据处理和分析。
六、MCP 的未来趋势
(一)MCP 注册中心**
随着 MCP 生态系统的不断发展,未来可能会出现 MCP 注册中心,实现服务的发现和注册。这将使得 AI 应用能够更轻松地连接到第三方系统,进一步提升 MCP 的灵活性和可扩展性。
(二)改进 Agent 功能**
MCP 将进一步增强 AI 代理的功能,使其能够更智能地处理复杂的任务。例如,AI 代理可以通过 MCP 动态调用多个工具,完成复杂的业务流程。
(三)支持多模态**
未来,MCP 可能会扩展到图像、音频等多模态数据的处理。这将使得 LLM 不仅能够处理文本数据,还能处理图像和音频数据,进一步提升其应用范围。
七、总结
MCP 作为一种新兴的开放协议,为 AI 模型与外部工具和数据源的集成提供了一种标准化、简单高效的方式。它具有统一接口、降低集成成本、双向通信、高度扩展性等优势,在多个领域有着广泛的应用前景。通过本文的介绍,你应该对 MCP 有了更深入的了解,并且可以开始尝试在自己的项目中使用它。