[51NOD] 1265 四点共面 [数学&向量叉积]

给出三维空间上的四个点(点与点的位置均不相同),判断这4个点是否在同一个平面内(4点共线也算共面)。如果共面,输出”Yes”,否则输出”No”。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 1000)
第2 - 4T + 1行:每行4行表示一组数据,每行3个数,x, y, z, 表示该点的位置坐标(-1000 <= x, y, z <= 1000)。
Output
输出共T行,如果共面输出”Yes”,否则输出”No”。
Input示例
1
1 2 0
2 3 0
4 0 0
0 0 0
Output示例
Yes

题解

用高数知识-向量叉积

4个点,任取一个点为起点以其它3个点为终点可以确定3个向量,两两组合叉积可以得到3个向量,任取两个再叉积,判断两个向量是否平行即叉积后向量各分量是否为零,若是则说明四点共面。

该方法可以用反证法证明

#include<stdio.h>

struct p{int x,y,z;};
p sub(p a,p b){
    p PP;   
    PP.x=b.x-a.x;
    PP.y=b.y-a.y;
    PP.z=b.z-a.z;
    return PP;
}
p xp(p a, p b){
    p PP;
    PP.x=a.y*b.z-b.y*a.z;
    PP.y=b.x*a.z-a.x*b.z;
    PP.z=a.x*b.y-b.x*a.y;
    return PP;
}

int main()
{
    int T;
    scanf("%d",&T);
    while(T--){
        p dot[4];
        for(int i=0;i<4;++i) scanf("%d%d%d",&dot[i].x,&dot[i].y,&dot[i].z);
        p PP1=xp(sub(dot[0],dot[1]),sub(dot[0],dot[2]));
        p PP2=xp(sub(dot[0],dot[1]),sub(dot[0],dot[3]));
        p PP=xp(PP1,PP2);
        puts(PP.x==0&&PP.y==0&&PP.z==0?"Yes":"No");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值