机器学习
文章平均质量分 95
介绍机器学习各个分支,包括基本算法和应用。
Chen_Tianyang
信号与信息处理硕士在读
图像处理 机器学习 嵌入式
展开
-
学习笔记 | 主成分分析(PCA)及其若干应用
这篇博客介绍了主成分分析及其若干简单应用,包括背景说明、基本原理、算法的实现步骤以及一些基本的应用,应用包括用PCA降维、做数据的可视化、图像压缩等。原创 2018-12-28 20:11:41 · 28015 阅读 · 9 评论 -
再生核希尔伯特空间(RKHS)导论—第三部分
本文是系列文章《再生核希尔伯特空间[RKHS]导论》的第三部分,介绍核(kernel)的概念、求值泛函(Evaluation Functional)以及再生核希尔伯特空间(RKHS)。翻译 2018-12-27 11:17:21 · 3307 阅读 · 0 评论 -
再生核希尔伯特空间(RKHS)导论—第二部分
本文是系列文章《再生核希尔伯特空间[RKHS]导论》的第二部分,介绍内积空间(Inner Product Space)、希尔伯特空间(Hilbert Space)和再生核希尔伯特空间(Reproducing Kernel Hilbert Space,RKHS)。翻译 2018-12-26 20:30:15 · 3035 阅读 · 0 评论 -
再生核希尔伯特空间(RKHS)导论—第一部分
本文是系列文章《再生核希尔伯特空间[RKHS]导论》的第一部分,介绍向量空间(Vector Space)、赋范空间(Normed Vector Space)、度量空间(Metric Space)和巴拿赫空间(Banach Space)。翻译 2018-12-26 16:19:44 · 2460 阅读 · 0 评论 -
MNIST | 基于k-means和KNN的0-9数字手写体识别
本文介绍基于k-means和KNN的0-9数字手写体识别,把k-means聚类和CNN识别应用到数字手写体识别问题中去。在看本文之前读者可以先去看我另外三篇博客:《kaggle|基于k-means和KNN的语音性别识别》、《MINIST|基于朴素贝叶斯分类器的0-9数字手写体识别》和《算法|k-means聚类》作为基础。本文的主要内容包括背景说明、算法原理、代码实现以及实验与结果分析。原创 2018-11-05 11:10:54 · 12664 阅读 · 9 评论 -
MNIST | 基于朴素贝叶斯分类器的0-9数字手写体识别
本文介绍基于朴素贝叶斯分类器的0-9数字手写体识别,本文基于MINIST数据集,采用朴素贝叶斯分类器,实现了0-9数字手写体的识别。文章的主要内容包括背景说明、数据集介绍、代码实现以及实验与结果分析。原创 2018-10-25 16:53:07 · 12951 阅读 · 12 评论 -
kaggle | 基于k-means和KNN的语音性别识别
本文介绍基于k-means和KNN的语音性别识别,把k-means聚类应用到语音性别识别问题中去,并同时使用KNN识别算法。读者可以先看我的其他两篇博客:《kaggl基于朴素贝叶斯分类器的语音性别识别》和《算法|k-means聚类》。本文的主要内容包括背景说明、算法原理、代码实现以及实验与结果分析。原创 2018-11-02 22:05:12 · 4027 阅读 · 0 评论 -
kaggle | 基于朴素贝叶斯分类器的语音性别识别
本文介绍基于朴素贝叶斯分类器的语音性别识别,本文基于kaggle上的一个数据集,采用朴素贝叶斯分类器,实现了通过语音识别说话人性别的功能。文章的主要内容包括背景说明、数据集介绍 、代码实现以及实验与结果分析。原创 2018-10-24 18:50:47 · 7053 阅读 · 3 评论 -
算法 | k-means聚类
本文介绍机器学习的一种常见算法:k-means聚类。聚类属于无监督学习,相比于分类,聚类不依赖预定义的类和类标号的训练实例。本文的主要内背景说明、算法原理、程序实现以及实验结果分析。原创 2018-11-01 21:25:41 · 3756 阅读 · 6 评论