理解A*寻路算法具体过程

转载 2015年03月10日 10:35:07

原文地址:http://www.cnblogs.com/technology/archive/2011/05/26/2058842.html

        当然寻路算法不止 A* 这一种, 还有递归, 非递归, 广度优先, 深度优先, 使用堆栈等等, 有兴趣的可以研究研究~~

简易地图

        如图所示简易地图, 其中绿色方块的是起点 (用 A 表示), 中间蓝色的是障碍物, 红色的方块 (用 B 表示) 是目的地. 为了可以用一个二维数组来表示地图, 我们将地图划分成一个个的小方块.

        二维数组在游戏中的应用是很多的, 比如贪吃蛇和俄罗斯方块基本原理就是移动方块而已. 而大型游戏的地图, 则是将各种"地貌"铺在这样的小方块上.

寻路步骤

        1. 从起点A开始, 把它作为待处理的方格存入一个"开启列表", 开启列表就是一个等待检查方格的列表.

        2. 寻找起点A周围可以到达的方格, 将它们放入"开启列表", 并设置它们的"父方格"为A.

        3. 从"开启列表"中删除起点 A, 并将起点 A 加入"关闭列表", "关闭列表"中存放的都是不需要再次检查的方格

        图中浅绿色描边的方块表示已经加入 "开启列表" 等待检查. 淡蓝色描边的起点 A 表示已经放入 "关闭列表" , 它不需要再执行检查.

        从 "开启列表" 中找出相对最靠谱的方块, 什么是最靠谱? 它们通过公式 F=G+H 来计算.

        F = G + H

                表示从起点 A 移动到网格上指定方格的移动耗费 (可沿斜方向移动).

                表示从指定的方格移动到终点 B 的预计耗费 (H 有很多计算方法, 这里我们设定只可以上下左右移动).

        我们假设横向移动一个格子的耗费为10, 为了便于计算, 沿斜方向移动一个格子耗费是14. 为了更直观的展示如何运算 FGH, 图中方块的左上角数字表示 F, 左下角表示 G, 右下角表示 H. 看看是否跟你心里想的结果一样?

        从 "开启列表" 中选择 F 值最低的方格 C (绿色起始方块 A 右边的方块), 然后对它进行如下处理:

        4. 把它从 "开启列表" 中删除, 并放到 "关闭列表" 中.

        5. 检查它所有相邻并且可以到达 (障碍物和 "关闭列表" 的方格都不考虑) 的方格. 如果这些方格还不在 "开启列表" 里的话, 将它们加入 "开启列表", 计算这些方格的 G, H 和 F 值各是多少, 并设置它们的 "父方格" 为 C.

        6. 如果某个相邻方格 D 已经在 "开启列表" 里了, 检查如果用新的路径 (就是经过C 的路径) 到达它的话, G值是否会更低一些, 如果新的G值更低, 那就把它的 "父方格" 改为目前选中的方格 C, 然后重新计算它的 F 值和 G 值 (H 值不需要重新计算, 因为对于每个方块, H 值是不变的). 如果新的 G 值比较高, 就说明经过 C 再到达 D 不是一个明智的选择, 因为它需要更远的路, 这时我们什么也不做.

        如图, 我们选中了 C 因为它的 F 值最小, 我们把它从 "开启列表" 中删除, 并把它加入 "关闭列表". 它右边上下三个都是墙, 所以不考虑它们. 它左边是起始方块, 已经加入到 "关闭列表" 了, 也不考虑. 所以它周围的候选方块就只剩下 4 个. 让我们来看看 C 下面的那个格子, 它目前的 G 是14, 如果通过 C 到达它的话, G将会是 10 + 10, 这比 14 要大, 因此我们什么也不做.

        然后我们继续从 "开启列表" 中找出 F 值最小的, 但我们发现 C 上面的和下面的同时为 54, 这时怎么办呢? 这时随便取哪一个都行, 比如我们选择了 C 下面的那个方块 D.

        D 右边已经右上方的都是墙, 所以不考虑, 但为什么右下角的没有被加进 "开启列表" 呢? 因为如果 C 下面的那块也不可以走, 想要到达 C 右下角的方块就需要从 "方块的角" 走了, 在程序中设置是否允许这样走. (图中的示例不允许这样走)

        就这样, 我们从 "开启列表" 找出 F 值最小的, 将它从 "开启列表" 中移掉, 添加到 "关闭列表". 再继续找出它周围可以到达的方块, 如此循环下去...

        那么什么时候停止呢? —— 当我们发现 "开始列表" 里出现了目标终点方块的时候, 说明路径已经被找到.

如何找回路径

        如上图所示, 除了起始方块, 每一个曾经或者现在还在 "开启列表" 里的方块, 它都有一个 "父方块", 通过 "父方块" 可以索引到最初的 "起始方块", 这就是路径.

将整个过程抽象

把起始格添加到 "开启列表" 
do 

       寻找开启列表中F值最低的格子, 我们称它为当前格. 
       把它切换到关闭列表. 
       对当前格相邻的8格中的每一个 
          if (它不可通过 || 已经在 "关闭列表" 中) 
          { 
                什么也不做. 
           } 
          if (它不在开启列表中) 
          { 
                把它添加进 "开启列表", 把当前格作为这一格的父节点, 计算这一格的 FGH 
          if (它已经在开启列表中) 
          { 
                if (用G值为参考检查新的路径是否更好, 更低的G值意味着更好的路径) 
                    { 
                            把这一格的父节点改成当前格, 并且重新计算这一格的 GF 值. 
                    } 
} while( 目标格已经在 "开启列表", 这时候路径被找到) 
如果开启列表已经空了, 说明路径不存在.

最后从目标格开始, 沿着每一格的父节点移动直到回到起始格, 这就是路径.

主要代码

程序中的 "开启列表" 和 "关闭列表"

 
1
List<Point> CloseList;
List<Point> OpenList;

Point 类

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class Point
{
    public Point ParentPoint { get; set; }
    public int F { get; set; }  //F=G+H
    public int G { get; set; }
    public int H { get; set; }
    public int X { get; set; }
    public int Y { get; set; }
 
    public Point(int x, int y)
    {
        this.X = x;
        this.Y = y;
    }
    public void CalcF()
    {
        this.F = this.G + this.H;
    }
}

寻路过程

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public Point FindPath(Point start, Point end, bool IsIgnoreCorner)
{
    OpenList.Add(start);
    while (OpenList.Count != 0)
    {
        //找出F值最小的点
        var tempStart = OpenList.MinPoint();
        OpenList.RemoveAt(0);
        CloseList.Add(tempStart);
        //找出它相邻的点
        var surroundPoints = SurrroundPoints(tempStart, IsIgnoreCorner);
        foreach (Point point in surroundPoints)
        {
            if (OpenList.Exists(point))
                //计算G值, 如果比原来的大, 就什么都不做, 否则设置它的父节点为当前点,并更新G和F
                FoundPoint(tempStart, point);
            else
                //如果它们不在开始列表里, 就加入, 并设置父节点,并计算GHF
                NotFoundPoint(tempStart, end, point);
        }
        if (OpenList.Get(end) != null)
            return OpenList.Get(end);
    }
    return OpenList.Get(end);
}

下载代码

        

本文链接: http://www.cnblogs.com/technology/archive/2011/05/26/2058842.html

我见过的最容易读懂的 a*算法(A*寻路初探)

http://blog.vckbase.com/panic/archive/2005/03/20/3778.html A*寻路初探...
  • windcao
  • windcao
  • 2007-03-19 16:31:00
  • 9903

A*寻路算法浅析

A*算法:A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法。估价值与实际值越接近,估价函数取得就越好。(像这种专业的概念的解释,我们还是交给度娘来做吧)...
  • yiyikela
  • yiyikela
  • 2015-05-28 21:59:13
  • 6106

[笔记]A*寻路算法初探

写在开始之前最近突然对各路游戏的寻路算法很感兴趣,于是去学习了下游戏里的AI们是如何寻路的。网上相关内容很多,但同时有些说法也不一,制作自己的A* 算法时也有因不同的说法而困惑。整理多方资料并自己实践...
  • XieNaoban
  • XieNaoban
  • 2016-12-08 20:38:43
  • 1069

A*寻路路径优化

本文目的是对A*寻路算法所生成的路径进行一些人性化的调整,使其看起来不至于太机械化。关于A*算法的原理与实现,读者可以阅读其他资料,这里不再详细阐述。         A*寻路算法本质上是一个有方向性...
  • you_lan_hai
  • you_lan_hai
  • 2015-04-12 20:53:33
  • 4002

a*自动寻路算法详解

这篇博文是在其他博客基础上加工的,主要原因是感觉原博客举得例子不太好,很多细节感觉没有描述。 A*算法主要是在父节点更新那个地方很容易误解,但是父节点的更新又是A*算法的核心,因为遍历到目标节点之后就...
  • jialeheyeshu
  • jialeheyeshu
  • 2016-11-09 20:47:29
  • 2514

A*寻路算法与它的速度

如果你是一个游戏开发者,或者开发过一些关于人工智能的游戏,你一定知道A*算法,如果没有接触过此类的东东,那么看了这一篇文章,你会对A*算法从不知道变得了解,从了解变得理解。我不是一个纯粹的游戏开发者,...
  • lufy_Legend
  • lufy_Legend
  • 2010-07-14 10:59:00
  • 33190

A*寻路算法的最简单通俗讲解

A*算法,或称A*(A-Star)寻路算法,是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题的有效算法。该算法中巧妙地引入了一个启发值来提高搜索表现,算法中的距离估算值与实际值越...
  • baimafujinji
  • baimafujinji
  • 2016-01-23 13:54:36
  • 5947

A*寻路算法

A*简介图搜索技术在游戏编程中无处不在,无论什么游戏
  • qp120291570
  • qp120291570
  • 2014-10-27 20:51:46
  • 3505

A*算法

Amit's A star Page中译文   译序 这篇文章很适合A*算法的初学者,可惜网上没找到翻译版的。本着好东西不敢独享的想法,也为了锻炼一下英文,本人译了这篇文章。 ...
  • coutamg
  • coutamg
  • 2016-12-29 08:51:21
  • 10224

寻路算法演示程序(A*,BFS,Dijkstra )

  • 2015年06月07日 12:53
  • 5.71MB
  • 下载
收藏助手
不良信息举报
您举报文章:理解A*寻路算法具体过程
举报原因:
原因补充:

(最多只允许输入30个字)