目录
前言
本篇为插值法专栏第三篇内容讲述,此章主要讲述 Lagrange(拉格朗日)插值法及matlab代码,其中也给出详细的例子让大家更好的理解Lagrange插值法
提示
之前已经介绍牛顿插值法和三次样条插值,如果没看过前两篇的可以点击以下链接阅读
- 数值分析(一)牛顿插值法
- 数值分析(二)三次样条插值法
- 数值分析(二续) 三次样条插值二类边界完整matlab代码
- 数值分析(三) Lagrange(拉格朗日)插值法及Matlab代码实现
- 数值分析(四) Hermite(埃尔米特)插值法及matlab代码
一、Lagrange(拉格朗日)插值
为了构造满足插值条件 p ( x i ) = f ( x i ) , ( i = 0 , 1 , 2 , … , n ) p(x_i) = f(x_i), (i=0, 1, 2, \dots, n) p(xi)=f(xi),(i=0,1,2,…,n)的便于使用的插值多项式 P ( x ) P(x) P(x) ,在介绍Lagrange插值前先补充一下 线性插值 和 抛物插值 的知识点。
1. 线性插值
线性插值是代数插值的最简单形式。假设给定了函数 f ( x ) f(x) f(x) 在两个互异的点的值, x 0 , x 1 , y 0 = f ( x 0 ) , y 1 = f ( x 1 ) x_0, x_1, y_0 = f(x_0), y_1 = f(x_1) x0,x1,y0=f(x0),y1=f(x1) ,现要求用线性函数 p ( x ) = a x + b p(x) = ax+b p(x)=ax+b 近似的代替 f ( x ) f(x) f(x)。选择参数 a a a 和 b b b, 使 p ( x i ) = f ( x i ) , ( i = 0 , 1 ) p(x_i) = f(x_i), (i=0, 1) p(xi)=f(xi),(i=0,1)。称这样的线性函数 P ( x ) P(x) P(x) 为 f ( x ) f(x) f(x) 的线性插值函数。
线性插值的几何意义:用通过点 A ( x 0 , f ( x 0 ) ) A(x_0, f(x_0)) A(x0,f(x0)) 和 B ( x 1 , f ( x 1 ) ) B(x_1, f(x_1)) B(x1,f(x1)) 的直线近似地代替曲线 y = f ( x ) y=f(x) y=f(x) 由解析几何知道,这条直线用点斜式表示为(如下图所示): p ( x ) = y 0 + y 1 − y 0 x 1 − x 0 ( x − x 0 ) → p ( x ) = x − x 1 x 0 − x 1 y 0 + x − x 0 x 1 − x 0 y 1 p(x) = {y_0} + \frac{
{
{y_1} - {y_0}}}{
{
{x_1} - {x_0}}}(x - {x_0}) \to p(x) = \frac{
{x - {x_1}}}{
{
{x_0} - {x_1}}}{y_0} + \frac{
{x - {x_0}}}{
{
{x_1} - {x_0}}}{y_1} p(x)=y0+x1−x0y1−y0(x−x0)→p(x)=x0−x1x−x1y0+x1−x0x−x0y1
为了便于推广,那么记 l 0 ( x ) = x − x 1 x 0 − x 1 , l 1 ( x ) = x − x 0 x 1 − x 0 l_0(x) = \frac{x-x_1}{x_0-x_1}, l_1(x) = \frac{x-x_0}{x_1-x_0} l0(x)=x0−x1x−x1,l1(x)=x1−x0x−x0这是一次函数,具有如下性质 l 0 ( x 0 ) = 1 , l 0 ( x 1 ) = 0 , l 1 ( x 0 ) = 0 l 1 ( x 1 ) = 1 l 0 ( x ) + l 1 ( x ) = 1 \begin{matrix} l_0(x_0)=1, & l_0(x_1)=0, \\ l_1(x_0) = 0 & l_1(x_1) = 1\end{matrix} \\ l_0(x)+l_1(x) =1 l0(x0)=1,l1(x0)=0l0(x1)=0,l1(x1)=1l0(x)+l1(x)=1
那么可以记为: l k ( x i ) = δ k i = { 1 ( i = k ) 0 ( i ≠ k ) l_k(x_i) = \delta_{ki}= \left\{\begin{matrix} 1 & (i=k)\\0 &(i \ne k) &\end{matrix}\right. lk(xi)=δki={
10(i=k)(i=k)那么 l 0 ( x ) l_0(x) l0(x) 和 l 1 ( x ) l_1(x) l1(x) 称为线性插值基函数,且有 l k ( x ) = ∏ j = 0 , j ≠ k 1 x − x j x k − x j , ( k = 0 , 1 ) l_k(x) = \prod_{j=0,j \ne k}^{1}\frac{x-x_j}{x_k-x_j}, (k=0,1) lk(x)=j=0,j=k∏1xk−xjx−xj,(k=0,1) 则上述线性插值函数可以表示为与基函数的线性组合 p ( x ) = l 0 ( x ) y 0 + l 1 ( x ) y 1 p(x) = l_0(x)y_0 + l_1(x)y_1 p(x)=l0(x)y0+l1(x)y1
2. 抛物插值
抛物插值又称二次插值,它也是常用的代数插值之一。设已知 f ( x ) f(x) f(x) 在三个互异点 x 0 , x 1 , x 2 x_0, x_1, x_2 x0,x1,x2的函数值 y 0 , y 1 , y 2 y_0, y_1, y_2 y0,y1,y2,要构造次数不超过二次的多项式
P ( x ) = a 2 x 2 + a 1 x + a 0 P(x) = a_2x^2 + a_1x + a_0 P(x)=a2x2+a1x+a0 使满足二次插值条件: P ( x i ) = y i ( i = 0 , 1 , 2 ) P(x_i) = y_i (i=0,1,2) P(xi)=yi(i=