Tensorflow学习:Tensorboard网络结构
定义一个命名空间:with tf.name_scope(‘input’):
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据集
mnist = input_data.read_data_sets("MNST_data", one_hot=True)
# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去
batch_size = 100
# 计算一共多少个批次 //:整除
n_batch = mnist.train.num_examples // batch_size
# 定义一个命名空间
with tf.name_scope('input'):
# 定义两个placeholder None:过会以一个批次喂进去,784:28*28(把一个图片拉成一个784的向量) 10:输出时0-9的10个数
x = tf.placeholder(tf.float32, [None, 784], name="x_input")
y = tf.placeholder(tf.float32, [None, 10], name="y_input")
# 定义一个简单的神经网络(只有输入层784个神经元,输出层10个神经元,不用隐层)
with tf.name_scope('layer'):
# 定义命名空间里的命名空间
with tf.name_scope('weights'):
# 定义权值
W = tf.Variable(tf.zeros([784, 10]), name="W")
with tf.name_scope('biases'):
# 定义偏向值
b = tf.Variable(tf.zeros([10]), name="b")
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x,W)+b
with tf.name_scope('softmax'):
# 通过softmax函数转化为概率值
prediction = tf.nn.softmax(wx_plus_b)
# 二次代价函数
with tf.name_scope('loss'):
# loss = tf.reduce_mean(tf.square(y - prediction))
# 对数似然代价函数(加快收敛的速度):label:真实标签值,logits:预测值,需要求下平均值
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=prediction))
with tf.name_scope('train'):
# 使用随机梯度下降法进行优化:是loss最小化,学习率:0.2
# train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
# 更换优化器
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
# 初始化变量
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
# 判断真实值与预测值是否相同(布尔类型),相同返回true
# tf.arg_max(prediction,1):求概率最大的数在哪个位置,相当于他的标签(返回一维张量中最大的值所在的位置)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.arg_max(prediction, 1))
with tf.name_scope('accuracy'):
# 求准确率:cast:将bool类型转换成32位float类型,然后求一个平均值(true=1,false=0)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 进行训练
with tf.Session() as sess:
# 初始化变量
sess.run(init)
#相对路径
writer = tf.summary.FileWriter('logs/', sess.graph)
# 训练次数:迭代1次
for step in range(1):
for batch in range(n_batch):
# 获得一个批次:100张图片
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# 把数据喂给它进行训练
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})
# 进行完一次迭代训练打印出准确率:测试用的测试集中的图片和标签
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Iter" + str(step) + ",Testing Accuracy:" + str(acc))
cmd:进入输出文件的路径
C:\Windows\system32>d:
D:\>cd D:\workspace\PyCharm\venv\cuiyongling\logs
D:\workspace\PyCharm\venv\cuiyongling\logs>tensorboard --logdir=D:\workspace\PyCharm\venv\cuiyongling\logs
D:\workspace\PyCharm\venv\cuiyongling\logs>tensorboard --logdir=D:\workspace\PyCharm\venv\cuiyongling\logs
d:\program files\python\lib\site-packages\numpy\_distributor_init.py:32: UserWarning: loaded more than 1 DLL from .libs:
d:\program files\python\lib\site-packages\numpy\.libs\libopenblas.NOIJJG62EMASZI6NYURL6JBKM4EVBGM7.gfortran-win_amd64.dll
d:\program files\python\lib\site-packages\numpy\.libs\libopenblas.PYQHXLVVQ7VESDPUVUADXEVJOBGHJPAY.gfortran-win_amd64.dll
stacklevel=1)
2020-08-03 21:20:44.471769: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'cudart64_101.dll'; dlerror: cudart64_101.dll not found
2020-08-03 21:20:44.476755: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.3.0 at http://localhost:6006/ (Press CTRL+C to quit)
用谷歌浏览器打开: http://localhost:6006/