Tensorflow学习:saver_restore模型载入(手写数字识别,简单神经网络)
saver = tf.train.Saver()
saver.restore(sess,'net/my_net.ckpt')
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 载入数据集
mnist = input_data.read_data_sets("MNST_data", one_hot=True)
# 每个批次的大小:一次性向神经网络中放入100张图片进行训练:以矩阵的形式放进去
batch_size = 100
# 计算一共多少个批次 //:整除
n_batch = mnist.train.num_examples // batch_size
# 定义两个placeholder None:过会以一个批次喂进去,784:28*28(把一个图片拉成一个784的向量) 10:输出时0-9的10个数
x = tf