一. 常用数学符号markdown表示
- 乘号,正负号,:
$\times$ $\pm$
: × \times × ± \pm ± - 除号, 竖线:
$\div$ $\mid$
: ÷ \div ÷ ∣ \mid ∣ - 点:
$\cdot$
: ⋅ \cdot ⋅ - 圆
$\circ$
: ∘ \circ ∘ - 克罗内克积
$\bigotimes$
: ⨂ \bigotimes ⨂ - 异或
$\bigoplus$
: ⨁ \bigoplus ⨁ - 小于等于,大于等于 不等于
$\leq$ $\geq$ $\neq$
: ≤ \leq ≤ ≥ \geq ≥ ≠ \neq = - 约等于
$\approx$
: ≈ \approx ≈ - 积分,双重积分,曲线积分
$\int$ $\iint$ $\oint$
: ∫ \int ∫ ∬ \iint ∬ ∮ \oint ∮ - 无穷
$\infty$
: ∞ \infty ∞ - 梯度
$\nabla$
: ∇ \nabla ∇ - 因为,所以
$\because$ 和 $\therefore$
∵ \because ∵ 和 ∴ \therefore ∴ - 任意和存在
$\forall$ 和 $\exists$
: ∀ \forall ∀ 和 ∃ \exists ∃ - 属于和不属于
$\in$ 和 $\notin$
: ∈ \in ∈ 和 ∉ \notin ∈/ - 子集,真子集,空集
$\subset$,$\subseteq$,$\nsubseteq$,$\emptyset$
: ⊂ \subset ⊂, ⊆ \subseteq ⊆, ⊈ \nsubseteq ⊈, ∅ \emptyset ∅ - 交集和并集
$\bigcap$ 和 $\bigcup$
: ⋂ \bigcap ⋂ 和 ⋃ \bigcup ⋃ - 逻辑或 和 逻辑与
$\bigvee$ 和 $\bigwedge$
: ⋁ \bigvee ⋁ 和 ⋀ \bigwedge ⋀ - 期望值
$\hat{y}$
: y ^ \hat{y} y^ - 平均值
$\overline{a+b+c+d}$
: a + b + c + d ‾ \overline{a+b+c+d} a+b+c+d
二. 数学符号markdown表示的案例
三角函数:$$\sin$$
:
sin
\sin
sin
分数:
$\dfrac{2}{3}$,$\tfrac{2}{3}$
: 2 3 \dfrac{2}{3} 32, 2 3 \tfrac{2}{3} 32$$\frac{7x+5}{2+y^2}$$
效果为: 7 x + 5 2 + y 2 \frac{7x+5}{2+y^2} 2+y27x+5$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
: x = − b ± b 2 − 4 a c 2 a x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} x=2a−b±b2−4ac
对数函数: $$\ln15, \log_2 10 , \lg7$$
:
ln
15
,
log
2
10
,
lg
7
\ln15, \log_2 10 , \lg7
ln15,log210,lg7
关系运算符: $$\pm \times \div \sum \prod \neq \leq \geq$$
:
±
×
÷
∑
∏
≠
≤
≥
\pm \times \div \sum \prod \neq \leq \geq
±×÷∑∏=≤≥
上标:
$A^2$、$A^{上标}$
: A 2 A^2 A2、 A 上标 A^{上标} A上标$$A^2 \; A^{上标} \; \mathop{A}\limits^2$$
A 2 A 上标 A 2 A^2 \; A^{上标} \; \mathop{A}\limits^2 A2A上标A2
下标:
$A_2$、$A_{下标}$
A 2 A_2 A2、 A 下标 A_{下标} A下标$$A_2 \; A_{下标}\; \mathop{A}\limits_2$$
: A 2 A 下标 A 2 A_2 \; A_{下标}\; \mathop{A}\limits_2 A2A下标2A$$z=z_l$$
: z = z l z=z_l z=zl
开根号:
$\sqrt[开方数]{参数}$
: 参数 开方数 \sqrt[开方数]{参数} 开方数参数$$\sqrt[开方数]{参数}$$
: 参数 开方数 \sqrt[开方数]{参数} 开方数参数$$\sqrt{2};\sqrt[n]{3}$$
: 2 ; 3 n \sqrt{2};\sqrt[n]{3} 2;n3$$ \sqrt x * \sqrt[3] x * \sqrt[-1] x $$
: x ∗ x 3 ∗ x − 1 \sqrt x * \sqrt[3] x * \sqrt[-1] x x∗3x∗−1x
求和:
$\sum$
: ∑ \sum ∑- 求和上下标:
$\sum_{i=0}^n$
: ∑ i = 0 n \sum_{i=0}^n ∑i=0n $$\sum ^2_3\;\sum \nolimits^2_3$$
: ∑ 3 2 ∑ 3 2 \sum ^2_3\;\sum \nolimits^2_3 3∑2∑32
积分:
$\int$
: ∫ \int ∫$$\int ^2_3\;\int \limits^2_3$$
: ∫ 3 2 ∫ 3 2 \int ^2_3\;\int \limits^2_3 ∫323∫2$$\int ^2_3 x^2 {\rm d}x$$
: ∫ 3 2 x 2 d x \int ^2_3 x^2 {\rm d}x ∫32x2dx$$\iint$$
: ∬ \iint ∬
极限:
$$\lim_{n\rightarrow+\infty} n$$
: lim n → + ∞ n \lim_{n\rightarrow+\infty} n n→+∞limn$$\begin{aligned} \lim_{a\to \infty} \tfrac{1}{a} \end{aligned}$$
: lim a → ∞ 1 a \begin{aligned} \lim_{a\to \infty} \tfrac{1}{a} \end{aligned} a→∞lima1
累加:$$\sum \frac{1}{i^2}$$
:
∑
1
i
2
\sum \frac{1}{i^2}
∑i21
累乘:
$$\prod \frac{1}{i^2}$$
: ∏ 1 i 2 \prod \frac{1}{i^2} ∏i21$$ \prod_{{ \begin{gathered} 1\le i \le n\\ 1\le j \le m \end{gathered} }} M_{i,j} $$
:
∏ 1 ≤ i ≤ n 1 ≤ j ≤ m M i , j \prod_{{ \begin{gathered} 1\le i \le n\\ 1\le j \le m \end{gathered} }} M_{i,j} 1≤i≤n1≤j≤m∏Mi,j
矢量:$$\vec{a} \cdot \vec{b}=0$$
: $$
a
⃗
⋅
b
⃗
=
0
\vec{a} \cdot \vec{b}=0
a⋅b=0
三. 希腊字符
$$\alpha \beta \gamma \delta \epsilon $$
:
α
β
γ
δ
ϵ
\alpha \beta \gamma \delta \epsilon
αβγδϵ
$$ \zeta \eta \theta \vartheta \iota $$
:
ζ
η
θ
ϑ
ι
\zeta \eta \theta \vartheta \iota
ζηθϑι
$$ \kappa \lambda \mu \nu \xi $$
:
κ
λ
μ
ν
ξ
\kappa \lambda \mu \nu \xi
κλμνξ
$$o \pi \varpi \rho \varrho $$
:
o
π
ϖ
ρ
ϱ
o \pi \varpi \rho \varrho
oπϖρϱ
$$ \sigma \varsigma \tau \upsilon \phi $$
:
σ
ς
τ
υ
ϕ
\sigma \varsigma \tau \upsilon \phi
σςτυϕ
$$ \varphi \chi \psi \omega A $$
:
φ
χ
ψ
ω
A
\varphi \chi \psi \omega A
φχψωA
$$ B \Gamma \varGamma \Delta \varDelta $$
:
B
Γ
Γ
Δ
Δ
B \Gamma \varGamma \Delta \varDelta
BΓΓΔΔ
$$ E Z H \Theta \varTheta $$
:
E
Z
H
Θ
Θ
E Z H \Theta \varTheta
EZHΘΘ
$$ I K \Lambda \varLambda M $$
:
I
K
Λ
Λ
M
I K \Lambda \varLambda M
IKΛΛM
$$ N \Xi \varXi O \Pi $$
:
N
Ξ
Ξ
O
Π
N \Xi \varXi O \Pi
NΞΞOΠ
$$ \varPi P \Sigma \Upsilon \varUpsilon $$
:
Π
P
Σ
Υ
Υ
\varPi P \Sigma \Upsilon \varUpsilon
ΠPΣΥΥ
$$ \Phi \varPhi X \varPsi \Omega \varOmega$$
:
Φ
Φ
X
Ψ
Ω
Ω
\Phi \varPhi X \varPsi \Omega \varOmega
ΦΦXΨΩΩ
四. 一些公式
矩阵:
$$ \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right]\tag{2}$$
[
1
2
3
4
5
6
7
8
9
]
(2)
\left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right]\tag{2}
147258369
(2)
分段函数:
$$
f(x) = \left\{
\begin{array}{lr}
x^2 & : x < 0\\
x^3 & : x \ge 0
\end{array}
\right.
$$
$$
u(x) =
\begin{cases}
\exp{x} & \text{if } x \geq 0 \\
1 & \text{if } x < 0
\end{cases}
$$
f ( x ) = { x 2 : x < 0 x 3 : x ≥ 0 f(x) = \left\{ \begin{array}{lr} x^2 & : x < 0\\ x^3 & : x \ge 0 \end{array} \right. f(x)={x2x3:x<0:x≥0
u
(
x
)
=
{
exp
x
if
x
≥
0
1
if
x
<
0
u(x) = \begin{cases} \exp{x} & \text{if } x \geq 0 \\ 1 & \text{if } x < 0 \end{cases}
u(x)={expx1if x≥0if x<0
方程组:
$$
\left\{
\begin{array}{c}
a_1x+b_1y+c_1z=d_1 \\
a_2x+b_2y+c_2z=d_2 \\
a_3x+b_3y+c_3z=d_3
\end{array}
\right.
$$
{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. ⎩ ⎨ ⎧a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3
线性模型:
$$
h(\theta) = \sum_{j = 0} ^n \theta_j x_j
$$
h ( θ ) = ∑ j = 0 n θ j x j h(\theta) = \sum_{j = 0} ^n \theta_j x_j h(θ)=j=0∑nθjxj
均方误差:
$$
J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2
$$
J ( θ ) = 1 2 m ∑ i = 0 m ( y i − h θ ( x i ) ) 2 J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2 J(θ)=2m1i=0∑m(yi−hθ(xi))2
批量梯度下降:
$$
\frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j
$$
∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) x j i \frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j ∂θj∂J(θ)=−m1i=0∑m(yi−hθ(xi))xji
五. 关系符号和箭头符号
3.1 关系符号
$$
\bowtie \Join \propto \varpropto \multimap \pitchfork \therefore \because = \neq \equiv \approx \sim \simeq \backsimeq \approxeq \cong \ncong \smile \frown \asymp \smallfrown \smallsmile \between \prec \succ \nprec \nsucc \preceq \succeq \npreceq \nsucceq \preccurlyeq \succcurlyeq \curlyeqprec \curlyeqsucc \precsim \succsim \precnsim \succnsim \precapprox \succapprox \precnapprox \succnapprox \perp \vdash \dashv \nvdash \Vdash \Vvdash \models \vDash \nvDash \nVDash \mid \nmid \parallel \nparallel \shortmid \nshortmid \shortparallel \nshortparallel < > \nless \ngtr \lessdot \gtrdot \ll \gg \lll \ggg \leq \geq \lneq \gneq \nleq \ngeq \leqq \geqq \lneqq \gneqq \lvertneqq \gvertneqq \nleqq \ngeqq \leqslant \geqslant \nleqslant \ngeqslant \eqslantless \eqslantgtr \lessgtr \gtrless \lesseqgtr \gtreqless \lesseqqgtr \gtreqqless \lesssim \gtrsim \lnsim \gnsim \lessapprox \gtrapprox \lnapprox \gnapprox \vartriangleleft \vartriangleright \ntriangleleft \ntriangleright \trianglelefteq \trianglerighteq \ntrianglelefteq \ntrianglerighteq \blacktriangleleft \blacktriangleright \subset \supset \subseteq \supseteq \subsetneq \supsetneq \varsubsetneq \varsupsetneq \nsubseteq \nsupseteq \subseteqq \supseteqq \subsetneqq \supsetneqq \nsubseteqq \nsupseteqq \backepsilon \Subset \Supset \sqsubset \sqsupset \sqsubseteq \sqsupseteq
$$
⋈ ⋈ ∝ ∝ ⊸ ⋔ ∴ ∵ = ≠ ≡ ≈ ∼ ≃ ⋍ ≊ ≅ ≆ ⌣ ⌢ ≍ ⌢ ⌣ ≬ ≺ ≻ ⊀ ⊁ ⪯ ⪰ ⋠ ⋡ ≼ ≽ ⋞ ⋟ ≾ ≿ ⋨ ⋩ ⪷ ⪸ ⪹ ⪺ ⊥ ⊢ ⊣ ⊬ ⊩ ⊪ ⊨ ⊨ ⊭ ⊯ ∣ ∤ ∥ ∦ ∣ ∤ ∥ ∦ < > ≮ ≯ ⋖ ⋗ ≪ ≫ ⋘ ⋙ ≤ ≥ ⪇ ⪈ ≰ ≱ ≦ ≧ ≨ ≩ ≨ ≩ ≰ ≱ ⩽ ⩾ ≰ ≱ ⪕ ⪖ ≶ ≷ ⋚ ⋛ ⪋ ⪌ ≲ ≳ ⋦ ⋧ ⪅ ⪆ ⪉ ⪊ ⊲ ⊳ ⋪ ⋫ ⊴ ⊵ ⋬ ⋭ ◀ ▶ ⊂ ⊃ ⊆ ⊇ ⊊ ⊋ ⊊ ⊋ ⊈ ⊉ ⫅ ⫆ ⫋ ⫌ ⊈ ⊉ ∍ ⋐ ⋑ ⊏ ⊐ ⊑ ⊒ \bowtie \Join \propto \varpropto \multimap \pitchfork \therefore \because = \neq \equiv \approx \sim \simeq \backsimeq \approxeq \cong \ncong \smile \frown \asymp \smallfrown \smallsmile \between \prec \succ \nprec \nsucc \preceq \succeq \npreceq \nsucceq \preccurlyeq \succcurlyeq \curlyeqprec \curlyeqsucc \precsim \succsim \precnsim \succnsim \precapprox \succapprox \precnapprox \succnapprox \perp \vdash \dashv \nvdash \Vdash \Vvdash \models \vDash \nvDash \nVDash \mid \nmid \parallel \nparallel \shortmid \nshortmid \shortparallel \nshortparallel < > \nless \ngtr \lessdot \gtrdot \ll \gg \lll \ggg \leq \geq \lneq \gneq \nleq \ngeq \leqq \geqq \lneqq \gneqq \lvertneqq \gvertneqq \nleqq \ngeqq \leqslant \geqslant \nleqslant \ngeqslant \eqslantless \eqslantgtr \lessgtr \gtrless \lesseqgtr \gtreqless \lesseqqgtr \gtreqqless \lesssim \gtrsim \lnsim \gnsim \lessapprox \gtrapprox \lnapprox \gnapprox \vartriangleleft \vartriangleright \ntriangleleft \ntriangleright \trianglelefteq \trianglerighteq \ntrianglelefteq \ntrianglerighteq \blacktriangleleft \blacktriangleright \subset \supset \subseteq \supseteq \subsetneq \supsetneq \varsubsetneq \varsupsetneq \nsubseteq \nsupseteq \subseteqq \supseteqq \subsetneqq \supsetneqq \nsubseteqq \nsupseteqq \backepsilon \Subset \Supset \sqsubset \sqsupset \sqsubseteq \sqsupseteq ⋈⋈∝∝⊸⋔∴∵==≡≈∼≃⋍≊≅≆⌣⌢≍⌢⌣≬≺≻⊀⊁⪯⪰⋠⋡≼≽⋞⋟≾≿⋨⋩⪷⪸⪹⪺⊥⊢⊣⊬⊩⊪⊨⊨⊭⊯∣∤∥∦∣∥<>≮≯⋖⋗≪≫⋘⋙≤≥⪇⪈≰≱≦≧≨≩⩽⩾⪕⪖≶≷⋚⋛⪋⪌≲≳⋦⋧⪅⪆⪉⪊⊲⊳⋪⋫⊴⊵⋬⋭◀▶⊂⊃⊆⊇⊊⊋⊈⊉⫅⫆⫋⫌∍⋐⋑⊏⊐⊑⊒
3.2 箭头符号
$$
\leftarrow \leftrightarrow \rightarrow \mapsto \longleftarrow \longleftrightarrow \longrightarrow \longmapsto \downarrow \updownarrow \uparrow \nwarrow \searrow \nearrow \swarrow \nleftarrow \nleftrightarrow \nrightarrow \hookleftarrow \hookrightarrow \twoheadleftarrow \twoheadrightarrow \leftarrowtail \rightarrowtail \Leftarrow \Leftrightarrow \Rightarrow \Longleftarrow \Longleftrightarrow \Longrightarrow \Updownarrow \Uparrow \Downarrow \nLeftarrow \nLeftrightarrow \nRightarrow \leftleftarrows \leftrightarrows \rightleftarrows \rightrightarrows \downdownarrows \upuparrows \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \Lsh \Rsh \looparrowleft \looparrowright \dashleftarrow \dashrightarrow \leftrightsquigarrow \rightsquigarrow \Lleftarrow \leftharpoondown \rightharpoondown \leftharpoonup \rightharpoonup \rightleftharpoons \leftrightharpoons \downharpoonleft \upharpoonleft \downharpoonright \upharpoonright
$$
← ↔ → ↦ ⟵ ⟷ ⟶ ⟼ ↓ ↕ ↑ ↖ ↘ ↗ ↙ ↚ ↮ ↛ ↩ ↪ ↞ ↠ ↢ ↣ ⇐ ⇔ ⇒ ⟸ ⟺ ⟹ ⇕ ⇑ ⇓ ⇍ ⇎ ⇏ ⇇ ⇆ ⇄ ⇉ ⇊ ⇈ ↺ ↻ ↶ ↷ ↰ ↱ ↫ ↬ ⇠ ⇢ ↭ ⇝ ⇚ ↽ ⇁ ↼ ⇀ ⇌ ⇋ ⇃ ↿ ⇂ ↾ \leftarrow \leftrightarrow \rightarrow \mapsto \longleftarrow \longleftrightarrow \longrightarrow \longmapsto \downarrow \updownarrow \uparrow \nwarrow \searrow \nearrow \swarrow \nleftarrow \nleftrightarrow \nrightarrow \hookleftarrow \hookrightarrow \twoheadleftarrow \twoheadrightarrow \leftarrowtail \rightarrowtail \Leftarrow \Leftrightarrow \Rightarrow \Longleftarrow \Longleftrightarrow \Longrightarrow \Updownarrow \Uparrow \Downarrow \nLeftarrow \nLeftrightarrow \nRightarrow \leftleftarrows \leftrightarrows \rightleftarrows \rightrightarrows \downdownarrows \upuparrows \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \Lsh \Rsh \looparrowleft \looparrowright \dashleftarrow \dashrightarrow \leftrightsquigarrow \rightsquigarrow \Lleftarrow \leftharpoondown \rightharpoondown \leftharpoonup \rightharpoonup \rightleftharpoons \leftrightharpoons \downharpoonleft \upharpoonleft \downharpoonright \upharpoonright ←↔→↦⟵⟷⟶⟼↓↕↑↖↘↗↙↚↮↛↩↪↞↠↢↣⇐⇔⇒⟸⟺⟹⇕⇑⇓⇍⇎⇏⇇⇆⇄⇉⇊⇈↺↻↶↷↰↱↫↬⇠⇢↭⇝⇚↽⇁↼⇀⇌⇋⇃↿⇂↾
六. 其它
行间公式:$$\frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2}$$
:
d
d
x
e
a
x
=
a
e
a
x
∑
i
=
1
n
(
X
i
−
X
‾
)
2
\frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2}
dxdeax=aeaxi=1∑n(Xi−X)2
省略号:
$$\cdots 和 \ldots$$
: ⋯ 和 … \cdots 和 \ldots ⋯和…$$ {1+2+3+\ldots+n} $$
: 1 + 2 + 3 + … + n {1+2+3+\ldots+n} 1+2+3+…+n
行内公式: $R^s_r(t_r,t_e)=(t_r-t_e)c$
:
R
r
s
(
t
r
,
t
e
)
=
(
t
r
−
t
e
)
c
R^s_r(t_r,t_e)=(t_r-t_e)c
Rrs(tr,te)=(tr−te)c
显示公式: $$R^s_r(t_r,t_e)=(t_r-t_e)c$$
:
R
r
s
(
t
r
,
t
e
)
=
(
t
r
−
t
e
)
c
R^s_r(t_r,t_e)=(t_r-t_e)c
Rrs(tr,te)=(tr−te)c
$$\frac{\partial f(x,y)}{\partial x}$$
:
∂
f
(
x
,
y
)
∂
x
\frac{\partial f(x,y)}{\partial x}
∂x∂f(x,y)