markdown中数学符号公式和字母表示

一. 常用数学符号markdown表示

  • 乘号,正负号,:$\times$ $\pm$: × \times × ± \pm ±
  • 除号, 竖线:$\div$ $\mid$: ÷ \div ÷ ∣ \mid
  • 点:$\cdot$: ⋅ \cdot
  • $\circ$: ∘ \circ
  • 克罗内克积$\bigotimes$: ⨂ \bigotimes
  • 异或$\bigoplus$: ⨁ \bigoplus
  • 小于等于,大于等于 不等于$\leq$ $\geq$ $\neq$: ≤ \leq ≥ \geq ≠ \neq =
  • 约等于$\approx$: ≈ \approx
  • 积分,双重积分,曲线积分$\int$ $\iint$ $\oint$: ∫ \int ∬ \iint ∮ \oint
  • 无穷$\infty$: ∞ \infty
  • 梯度$\nabla$: ∇ \nabla
  • 因为,所以$\because$ 和 $\therefore$ ∵ \because ∴ \therefore
  • 任意和存在$\forall$ 和 $\exists$: ∀ \forall ∃ \exists
  • 属于和不属于$\in$ 和 $\notin$: ∈ \in ∉ \notin /
  • 子集,真子集,空集$\subset$,$\subseteq$,$\nsubseteq$,$\emptyset$: ⊂ \subset ⊆ \subseteq ⊈ \nsubseteq , ∅ \emptyset
  • 交集和并集$\bigcap$ 和 $\bigcup$: ⋂ \bigcap ⋃ \bigcup
  • 逻辑或 和 逻辑与$\bigvee$ 和 $\bigwedge$: ⋁ \bigvee ⋀ \bigwedge
  • 期望值$\hat{y}$: y ^ \hat{y} y^
  • 平均值$\overline{a+b+c+d}$: a + b + c + d ‾ \overline{a+b+c+d} a+b+c+d

二. 数学符号markdown表示的案例

三角函数:$$\sin$$: sin ⁡ \sin sin

分数:

  • $\dfrac{2}{3}$,$\tfrac{2}{3}$: 2 3 \dfrac{2}{3} 32 2 3 \tfrac{2}{3} 32
  • $$\frac{7x+5}{2+y^2}$$ 效果为: 7 x + 5 2 + y 2 \frac{7x+5}{2+y^2} 2+y27x+5
  • $$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$: x = − b ± b 2 − 4 a c 2 a x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} x=2ab±b24ac

对数函数: $$\ln15, \log_2 10 , \lg7$$: ln ⁡ 15 , log ⁡ 2 10 , lg ⁡ 7 \ln15, \log_2 10 , \lg7 ln15,log210,lg7

关系运算符: $$\pm \times \div \sum \prod \neq \leq \geq$$: ± × ÷ ∑ ∏ ≠ ≤ ≥ \pm \times \div \sum \prod \neq \leq \geq ±×÷∑∏=≤≥


上标:

  • $A^2$、$A^{上标}$ : A 2 A^2 A2 A 上标 A^{上标} A上标
  • $$A^2 \; A^{上标} \; \mathop{A}\limits^2$$ A 2    A 上标    A 2 A^2 \; A^{上标} \; \mathop{A}\limits^2 A2A上标A2

下标:

  • $A_2$、$A_{下标}$ A 2 A_2 A2 A 下标 A_{下标} A下标
  • $$A_2 \; A_{下标}\; \mathop{A}\limits_2$$: A 2    A 下标    A 2 A_2 \; A_{下标}\; \mathop{A}\limits_2 A2A下标2A
  • $$z=z_l$$: z = z l z=z_l z=zl

开根号:

  • $\sqrt[开方数]{参数}$ : 参数 开方数 \sqrt[开方数]{参数} 开方数参数
  • $$\sqrt[开方数]{参数}$$: 参数 开方数 \sqrt[开方数]{参数} 开方数参数
  • $$\sqrt{2};\sqrt[n]{3}$$: 2 ; 3 n \sqrt{2};\sqrt[n]{3} 2 ;n3
  • $$ \sqrt x * \sqrt[3] x * \sqrt[-1] x $$: x ∗ x 3 ∗ x − 1 \sqrt x * \sqrt[3] x * \sqrt[-1] x x 3x 1x

求和:

  • $\sum$: ∑ \sum
  • 求和上下标:$\sum_{i=0}^n$: ∑ i = 0 n \sum_{i=0}^n i=0n
  • $$\sum ^2_3\;\sum \nolimits^2_3$$ : ∑ 3 2    ∑ 3 2 \sum ^2_3\;\sum \nolimits^2_3 3232

积分:

  • $\int$: ∫ \int
  • $$\int ^2_3\;\int \limits^2_3$$: ∫ 3 2    ∫ 3 2 \int ^2_3\;\int \limits^2_3 3232
  • $$\int ^2_3 x^2 {\rm d}x$$: ∫ 3 2 x 2 d x \int ^2_3 x^2 {\rm d}x 32x2dx
  • $$\iint$$: ∬ \iint

极限:

  • $$\lim_{n\rightarrow+\infty} n$$: lim ⁡ n → + ∞ n \lim_{n\rightarrow+\infty} n n+limn
  • $$\begin{aligned} \lim_{a\to \infty} \tfrac{1}{a} \end{aligned}$$: lim ⁡ a → ∞ 1 a \begin{aligned} \lim_{a\to \infty} \tfrac{1}{a} \end{aligned} alima1

累加:$$\sum \frac{1}{i^2}$$: ∑ 1 i 2 \sum \frac{1}{i^2} i21
累乘:

  • $$\prod \frac{1}{i^2}$$: ∏ 1 i 2 \prod \frac{1}{i^2} i21
  • $$ \prod_{{ \begin{gathered} 1\le i \le n\\ 1\le j \le m \end{gathered} }} M_{i,j} $$:
    ∏ 1 ≤ i ≤ n 1 ≤ j ≤ m M i , j \prod_{{ \begin{gathered} 1\le i \le n\\ 1\le j \le m \end{gathered} }} M_{i,j} 1in1jmMi,j

矢量:$$\vec{a} \cdot \vec{b}=0$$: $$ a ⃗ ⋅ b ⃗ = 0 \vec{a} \cdot \vec{b}=0 a b =0

三. 希腊字符

$$\alpha \beta \gamma \delta \epsilon $$: α β γ δ ϵ \alpha \beta \gamma \delta \epsilon αβγδϵ
$$ \zeta \eta \theta \vartheta \iota $$: ζ η θ ϑ ι \zeta \eta \theta \vartheta \iota ζηθϑι
$$ \kappa \lambda \mu \nu \xi $$: κ λ μ ν ξ \kappa \lambda \mu \nu \xi κλμνξ
$$o \pi \varpi \rho \varrho $$: o π ϖ ρ ϱ o \pi \varpi \rho \varrho oπϖρϱ
$$ \sigma \varsigma \tau \upsilon \phi $$: σ ς τ υ ϕ \sigma \varsigma \tau \upsilon \phi σςτυϕ
$$ \varphi \chi \psi \omega A $$: φ χ ψ ω A \varphi \chi \psi \omega A φχψωA
$$ B \Gamma \varGamma \Delta \varDelta $$: B Γ Γ Δ Δ B \Gamma \varGamma \Delta \varDelta BΓΓΔΔ
$$ E Z H \Theta \varTheta $$: E Z H Θ Θ E Z H \Theta \varTheta EZHΘΘ
$$ I K \Lambda \varLambda M $$: I K Λ Λ M I K \Lambda \varLambda M IKΛΛM
$$ N \Xi \varXi O \Pi $$: N Ξ Ξ O Π N \Xi \varXi O \Pi NΞΞOΠ
$$ \varPi P \Sigma \Upsilon \varUpsilon $$: Π P Σ Υ Υ \varPi P \Sigma \Upsilon \varUpsilon ΠPΣΥΥ
$$ \Phi \varPhi X \varPsi \Omega \varOmega$$ : Φ Φ X Ψ Ω Ω \Phi \varPhi X \varPsi \Omega \varOmega ΦΦXΨΩΩ

四. 一些公式

矩阵:
$$ \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right]\tag{2}$$
[ 1 2 3 4 5 6 7 8 9 ] (2) \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right]\tag{2} 147258369 (2)

分段函数:

$$
f(x) = \left\{
  \begin{array}{lr}
    x^2 & : x < 0\\
    x^3 & : x \ge 0
  \end{array}
\right.
$$

$$
u(x) = 
  \begin{cases} 
   \exp{x} & \text{if } x \geq 0 \\
   1       & \text{if } x < 0
  \end{cases}
$$

f ( x ) = { x 2 : x < 0 x 3 : x ≥ 0 f(x) = \left\{ \begin{array}{lr} x^2 & : x < 0\\ x^3 & : x \ge 0 \end{array} \right. f(x)={x2x3:x<0:x0

u ( x ) = { exp ⁡ x if  x ≥ 0 1 if  x < 0 u(x) = \begin{cases} \exp{x} & \text{if } x \geq 0 \\ 1 & \text{if } x < 0 \end{cases} u(x)={expx1if x0if x<0
方程组:

$$
\left\{ 
\begin{array}{c}
    a_1x+b_1y+c_1z=d_1 \\ 
    a_2x+b_2y+c_2z=d_2 \\ 
    a_3x+b_3y+c_3z=d_3
\end{array}
\right. 
$$

{ a 1 x + b 1 y + c 1 z = d 1 a 2 x + b 2 y + c 2 z = d 2 a 3 x + b 3 y + c 3 z = d 3 \left\{ \begin{array}{c} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{array} \right. a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

线性模型:

$$
h(\theta) = \sum_{j = 0} ^n \theta_j x_j
$$

h ( θ ) = ∑ j = 0 n θ j x j h(\theta) = \sum_{j = 0} ^n \theta_j x_j h(θ)=j=0nθjxj

均方误差:

$$
J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2
$$

J ( θ ) = 1 2 m ∑ i = 0 m ( y i − h θ ( x i ) ) 2 J(\theta) = \frac{1}{2m}\sum_{i = 0} ^m(y^i - h_\theta (x^i))^2 J(θ)=2m1i=0m(yihθ(xi))2

批量梯度下降:

$$
\frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j 
$$

∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 0 m ( y i − h θ ( x i ) ) x j i \frac{\partial J(\theta)}{\partial\theta_j}=-\frac1m\sum_{i=0}^m(y^i-h_\theta(x^i))x^i_j θjJ(θ)=m1i=0m(yihθ(xi))xji

五. 关系符号和箭头符号

3.1 关系符号

$$
\bowtie    \Join    \propto    \varpropto    \multimap    \pitchfork  \therefore    \because    =    \neq    \equiv    \approx    \sim    \simeq    \backsimeq    \approxeq    \cong    \ncong        \smile    \frown    \asymp    \smallfrown    \smallsmile    \between    \prec    \succ    \nprec    \nsucc    \preceq    \succeq    \npreceq    \nsucceq    \preccurlyeq    \succcurlyeq    \curlyeqprec    \curlyeqsucc    \precsim    \succsim    \precnsim    \succnsim    \precapprox    \succapprox    \precnapprox    \succnapprox    \perp    \vdash    \dashv    \nvdash    \Vdash    \Vvdash    \models    \vDash    \nvDash    \nVDash    \mid    \nmid    \parallel    \nparallel    \shortmid    \nshortmid    \shortparallel    \nshortparallel    <    >    \nless    \ngtr    \lessdot    \gtrdot    \ll    \gg    \lll    \ggg    \leq    \geq    \lneq    \gneq    \nleq    \ngeq    \leqq    \geqq    \lneqq    \gneqq    \lvertneqq    \gvertneqq    \nleqq    \ngeqq    \leqslant    \geqslant    \nleqslant    \ngeqslant    \eqslantless    \eqslantgtr    \lessgtr    \gtrless    \lesseqgtr    \gtreqless    \lesseqqgtr    \gtreqqless    \lesssim    \gtrsim    \lnsim    \gnsim    \lessapprox    \gtrapprox    \lnapprox    \gnapprox    \vartriangleleft    \vartriangleright    \ntriangleleft    \ntriangleright    \trianglelefteq    \trianglerighteq    \ntrianglelefteq    \ntrianglerighteq    \blacktriangleleft    \blacktriangleright    \subset    \supset    \subseteq    \supseteq    \subsetneq    \supsetneq    \varsubsetneq    \varsupsetneq    \nsubseteq    \nsupseteq    \subseteqq    \supseteqq    \subsetneqq    \supsetneqq    \nsubseteqq    \nsupseteqq    \backepsilon    \Subset    \Supset    \sqsubset    \sqsupset    \sqsubseteq    \sqsupseteq
$$

⋈ ⋈ ∝ ∝ ⊸ ⋔ ∴ ∵ = ≠ ≡ ≈ ∼ ≃ ⋍ ≊ ≅ ≆ ⌣ ⌢ ≍ ⌢ ⌣ ≬ ≺ ≻ ⊀ ⊁ ⪯ ⪰ ⋠ ⋡ ≼ ≽ ⋞ ⋟ ≾ ≿ ⋨ ⋩ ⪷ ⪸ ⪹ ⪺ ⊥ ⊢ ⊣ ⊬ ⊩ ⊪ ⊨ ⊨ ⊭ ⊯ ∣ ∤ ∥ ∦ ∣ ∤ ∥ ∦ < > ≮ ≯ ⋖ ⋗ ≪ ≫ ⋘ ⋙ ≤ ≥ ⪇ ⪈ ≰ ≱ ≦ ≧ ≨ ≩ ≨ ≩ ≰ ≱ ⩽ ⩾ ≰ ≱ ⪕ ⪖ ≶ ≷ ⋚ ⋛ ⪋ ⪌ ≲ ≳ ⋦ ⋧ ⪅ ⪆ ⪉ ⪊ ⊲ ⊳ ⋪ ⋫ ⊴ ⊵ ⋬ ⋭ ◀ ▶ ⊂ ⊃ ⊆ ⊇ ⊊ ⊋ ⊊ ⊋ ⊈ ⊉ ⫅ ⫆ ⫋ ⫌ ⊈ ⊉ ∍ ⋐ ⋑ ⊏ ⊐ ⊑ ⊒ \bowtie \Join \propto \varpropto \multimap \pitchfork \therefore \because = \neq \equiv \approx \sim \simeq \backsimeq \approxeq \cong \ncong \smile \frown \asymp \smallfrown \smallsmile \between \prec \succ \nprec \nsucc \preceq \succeq \npreceq \nsucceq \preccurlyeq \succcurlyeq \curlyeqprec \curlyeqsucc \precsim \succsim \precnsim \succnsim \precapprox \succapprox \precnapprox \succnapprox \perp \vdash \dashv \nvdash \Vdash \Vvdash \models \vDash \nvDash \nVDash \mid \nmid \parallel \nparallel \shortmid \nshortmid \shortparallel \nshortparallel < > \nless \ngtr \lessdot \gtrdot \ll \gg \lll \ggg \leq \geq \lneq \gneq \nleq \ngeq \leqq \geqq \lneqq \gneqq \lvertneqq \gvertneqq \nleqq \ngeqq \leqslant \geqslant \nleqslant \ngeqslant \eqslantless \eqslantgtr \lessgtr \gtrless \lesseqgtr \gtreqless \lesseqqgtr \gtreqqless \lesssim \gtrsim \lnsim \gnsim \lessapprox \gtrapprox \lnapprox \gnapprox \vartriangleleft \vartriangleright \ntriangleleft \ntriangleright \trianglelefteq \trianglerighteq \ntrianglelefteq \ntrianglerighteq \blacktriangleleft \blacktriangleright \subset \supset \subseteq \supseteq \subsetneq \supsetneq \varsubsetneq \varsupsetneq \nsubseteq \nsupseteq \subseteqq \supseteqq \subsetneqq \supsetneqq \nsubseteqq \nsupseteqq \backepsilon \Subset \Supset \sqsubset \sqsupset \sqsubseteq \sqsupseteq ⋈⋈∝∝⊸⋔∴∵==≡≈∼≃⋍≊⌣⌢≍⌢⌣≬≺≻⊀⊁⪯⪰⋠⋡≼≽⋞⋟≾≿⋨⋩⪷⪸⪹⪺⊥⊢⊣⊬⊩⊪⊨⊭⊯∦∣∥<>≮≯⋖⋗≪≫⋘⋙≤≥⪇⪈≰≱≦≧≨≩⩽⩾⪕⪖≶≷⋚⋛⪋⪌≲≳⋦⋧⪅⪆⪉⪊⊲⊳⋪⋫⊴⊵⋬⋭◀▶⊂⊃⊆⊇⊊⊋⊈⊉⫅⫆⫋⫌∍⋐⋑⊏⊐⊑⊒

3.2 箭头符号

$$
\leftarrow    \leftrightarrow    \rightarrow    \mapsto    \longleftarrow        \longleftrightarrow    \longrightarrow    \longmapsto    \downarrow    \updownarrow    \uparrow    \nwarrow        \searrow    \nearrow    \swarrow        \nleftarrow            \nleftrightarrow        \nrightarrow        \hookleftarrow        \hookrightarrow        \twoheadleftarrow        \twoheadrightarrow        \leftarrowtail        \rightarrowtail        \Leftarrow        \Leftrightarrow        \Rightarrow        \Longleftarrow        \Longleftrightarrow        \Longrightarrow            \Updownarrow        \Uparrow        \Downarrow        \nLeftarrow        \nLeftrightarrow    \nRightarrow        \leftleftarrows        \leftrightarrows        \rightleftarrows        \rightrightarrows        \downdownarrows        \upuparrows        \circlearrowleft        \circlearrowright        \curvearrowleft        \curvearrowright        \Lsh        \Rsh        \looparrowleft        \looparrowright        \dashleftarrow        \dashrightarrow        \leftrightsquigarrow        \rightsquigarrow        \Lleftarrow        \leftharpoondown        \rightharpoondown        \leftharpoonup        \rightharpoonup        \rightleftharpoons        \leftrightharpoons        \downharpoonleft        \upharpoonleft        \downharpoonright            \upharpoonright
$$

← ↔ → ↦ ⟵ ⟷ ⟶ ⟼ ↓ ↕ ↑ ↖ ↘ ↗ ↙ ↚ ↮ ↛ ↩ ↪ ↞ ↠ ↢ ↣ ⇐ ⇔ ⇒ ⟸ ⟺ ⟹ ⇕ ⇑ ⇓ ⇍ ⇎ ⇏ ⇇ ⇆ ⇄ ⇉ ⇊ ⇈ ↺ ↻ ↶ ↷ ↰ ↱ ↫ ↬ ⇠ ⇢ ↭ ⇝ ⇚ ↽ ⇁ ↼ ⇀ ⇌ ⇋ ⇃ ↿ ⇂ ↾ \leftarrow \leftrightarrow \rightarrow \mapsto \longleftarrow \longleftrightarrow \longrightarrow \longmapsto \downarrow \updownarrow \uparrow \nwarrow \searrow \nearrow \swarrow \nleftarrow \nleftrightarrow \nrightarrow \hookleftarrow \hookrightarrow \twoheadleftarrow \twoheadrightarrow \leftarrowtail \rightarrowtail \Leftarrow \Leftrightarrow \Rightarrow \Longleftarrow \Longleftrightarrow \Longrightarrow \Updownarrow \Uparrow \Downarrow \nLeftarrow \nLeftrightarrow \nRightarrow \leftleftarrows \leftrightarrows \rightleftarrows \rightrightarrows \downdownarrows \upuparrows \circlearrowleft \circlearrowright \curvearrowleft \curvearrowright \Lsh \Rsh \looparrowleft \looparrowright \dashleftarrow \dashrightarrow \leftrightsquigarrow \rightsquigarrow \Lleftarrow \leftharpoondown \rightharpoondown \leftharpoonup \rightharpoonup \rightleftharpoons \leftrightharpoons \downharpoonleft \upharpoonleft \downharpoonright \upharpoonright ←↔→↦⟵⟷⟶⟼↓↕↑↖↘↗↙↚↮↛↩↪↞↠↢↣⇐⇔⇒⟸⟺⟹⇕⇑⇓⇍⇎⇏⇇⇆⇄⇉⇊⇈↺↻↶↷↰↱↫↬⇠⇢↭⇝⇚↽⇁↼⇀⇌⇋⇃↿⇂↾

六. 其它

行间公式:$$\frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2}$$: d d x e a x = a e a x ∑ i = 1 n ( X i − X ‾ ) 2 \frac{d}{dx}e^{ax}=ae^{ax}\quad \sum_{i=1}^{n}{(X_i - \overline{X})^2} dxdeax=aeaxi=1n(XiX)2

省略号:

  • $$\cdots 和 \ldots$$: ⋯ 和 … \cdots 和 \ldots
  • $$ {1+2+3+\ldots+n} $$: 1 + 2 + 3 + … + n {1+2+3+\ldots+n} 1+2+3++n

行内公式: $R^s_r(t_r,t_e)=(t_r-t_e)c$: R r s ( t r , t e ) = ( t r − t e ) c R^s_r(t_r,t_e)=(t_r-t_e)c Rrs(tr,te)=(trte)c

显示公式: $$R^s_r(t_r,t_e)=(t_r-t_e)c$$: R r s ( t r , t e ) = ( t r − t e ) c R^s_r(t_r,t_e)=(t_r-t_e)c Rrs(tr,te)=(trte)c

$$\frac{\partial f(x,y)}{\partial x}$$: ∂ f ( x , y ) ∂ x \frac{\partial f(x,y)}{\partial x} xf(x,y)

<think>嗯,用户想了解在Markdown中怎么写数学公式。首先,我需要回忆一下Markdown支持数学公式的方法,通常是通过LaTeX语法,结合MathJax或者KaTeX来实现的。 首先,用户可能知道基本的行内独立公式的区别,但需要确认。行内公式应该用$...$包裹,而独立公式用$$...$$并单独成行。这点很重要,因为格式错误可能导致渲染失败。 然后,常见数学符号的LaTeX写法,比如上下标、分式、根号、积分、矩阵等。需要举一些例子,比如x²用$x^2$,分式用\frac{a}{b},根号用\sqrt{x},积分用\int,矩阵用\begin{matrix}等等。 另外,要注意中文环境下用户可能对LaTeX不太熟悉,所以例子要简单明了,避免复杂语法。同时,提醒用户确保使用的平台支持MathJax或KaTeX,比如GitHub的Markdown默认不支持,可能需要插件或其他支持。 可能用户会遇到的问题包括忘记加$符号,或者语法错误,比如括号不匹配。需要强调语法正确的重要性,比如大括号{}的使用,特殊字符的转义,比如\需要写成\\。 最后,结构要清晰,分步骤说明,先介绍行内独立公式,再列举常用语法,最后注意事项。这样用户能逐步学习,不会一下子被太多信息淹没。需要检查是否有遗漏的部分,比如希腊字母、运算符、不等式等常见元素,确保覆盖大部分使用场景。</think>在 Markdown 中编写数学公式需遵循 LaTeX 语法规则,以下是分步说明: --- ### 一、基础格式 1. **行内公式** 用 `$...$` 包裹公式公式会与文字同行显 **例**: ```markdown 勾股定理:$a^2 + b^2 = c^2$ ``` 效果:勾股定理:$a^2 + b^2 = c^2$ 2. **独立公式** 用 `$$...$$` 包裹公式公式会单独成段并居中 **例**: ```markdown 二次方程求根公式: $$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ ``` 效果: 二次方程求根公式: $$ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $$ --- ### 二、常用语法例 #### 1. 上下标 - 上标:`x^2` → $x^2$ - 下标:`x_1` → $x_1$ - 复合:`x_{i}^{n}` → $x_{i}^{n}$ #### 2. 分式与根号 - 分式:`\frac{a}{b}` → $\frac{a}{b}$ - 根号:`\sqrt{x}` → $\sqrt{x}$,`\sqrt[n]{x}` → $\sqrt[n]{x}$ #### 3. 希腊字母 - 小写:`\alpha`, `\beta` → $\alpha$, $\beta$ - 大写:`\Gamma`, `\Delta` → $\Gamma$, $\Delta$ #### 4. 运算符 - 加减乘除:`+ - \times \div` → $+ - \times \div$ - 求/积分:`\sum_{i=1}^n` → $\sum_{i=1}^n$,`\int_{a}^{b}` → $\int_{a}^{b}$ #### 5. 矩阵与行列式 ``` $$ \begin{matrix} 1 & 2 \\ 3 & 4 \\ \end{matrix} $$ ``` 效果: $$ \begin{matrix} 1 & 2 \\ 3 & 4 \\ \end{matrix} $$ #### 6. 括号与对齐 - 自适应括号:`\left( ... \right)` → $\left( \frac{a}{b} \right)$ - 多行对齐(`aligned` 环境): ``` $$ \begin{aligned} f(x) &= (a+b)^2 \\ &= a^2 + 2ab + b^2 \end{aligned} $$ ``` 效果: $$ \begin{aligned} f(x) &= (a+b)^2 \\ &= a^2 + 2ab + b^2 \end{aligned} $$ --- ### 三、注意事项 1. **语法严格性** - 括号、运算符需正确闭合,如 `{ }` 需用 `\{ \}` 转义 - 使用 `\\` 换行,`&` 对齐 2. **平台兼容性** - GitHub 原生 Markdown 不支持公式,需通过插件(如 MathJax)实现 - 部分编辑器(Typora、VSCode + Markdown Preview Enhanced)可直接预览 --- ### 四、快速练习 1. 行内公式:`$\sum_{k=1}^n k = \frac{n(n+1)}{2}$` → $\sum_{k=1}^n k = \frac{n(n+1)}{2}$ 2. 独立公式: ```markdown $$ e^{i\pi} + 1 = 0 $$ ``` 效果: $$ e^{i\pi} + 1 = 0 $$ 掌握这些语法后,即可高效编写数学公式! ✨
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据知道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值