仍然那句话别再掉头发是我们的共同期望,我不想年纪轻轻就秃头
传统的材料研发技术是通过实验合成表征对材料进行试错和验证,而过去的计算手段受限于算法效率,无法有效求解实际工业生产中面临的复杂问题。近几年随着大数据和人工智能介入,通过采用支持向量机、神经网络等机器学习算法训练数据集来构建模型,以预测材料的结构、吸附特性、电学特性、催化性能、力学特性和热力学特性等性能,大大推动了新型材料的发现和传统材料的更新,预测结果甚至能够达到与高保真模型基本相同的精度,且计算成本很低。然而,机器学习在材料科学中的应用仍存在一些瓶颈,人工智能研究项目所需的技能和知识匮乏缺失制约着该方向的发展。
简单的给几点建议了
一、入门阶段先从机器学习以及机器学习在材料领域的应用基本概念入手
了解机器学习方法的适用性和优势,以及有针对性的对python语言基础进行系统学习,为之后构建相应算法模型框架打下基础,这样以后学习时候才能游刃有余;
那麽仅仅如此就够啦吗?答案是否定的
二、进阶阶段需要深度学习神经网络、经典机器学习模型、材料基因工程入门与实战、图神经网络与实践、机器学习+Science五个模块,还需要结合案例实践(神经网络在催化领域的应用、预测杂化钙钛矿带隙、有机太阳能电池材料快速筛选、团簇结构数据库构建、同素异形体结构数据库构建、材料指纹和势函数生成、描述符的向量化生成与特征、图神经网络预测无机材料的性能、分子理化性质的预测、量子点发光材料色温的预测、半导体材料物理性质预测、二维材料的性质预测等)这些必不可少。所以还是有很大的挑战的呢
结合当下材料基因工程、图神经网络研究新范式使材料设计满足当前和未来发展,任重而而道远~
Numpy模块——矩阵的科学计算
Matplotlib模块——数据处理与绘图
logistic 回归中的梯度下降法
向量化 logistic 回归的梯度输出
神经网络的梯度下降法
深层网络中的前向传播
深度学习框架——Pytorch的使用
集成学习(AdaBoost和GBDT算法、XGBoost算法、LightGBM算法)
模型选择与性能优化(数据清洗、特征工程、数据建模)
Scikit-learn机器学习库的使用
Material Project数据库、Pymatgen
OQMD数据库、AFLOW数据库数据获取与使用
COMPUTATIONAL MATERIALS REPOSITORY数据库与ASE
自定义材料数据集的构建
材料化学的特征工程
特征选择(过滤特征、包装到其他评估或集成到训练)
基于sklearn的python实现
化学与材料领域经典的图神经网络架构——CGCNN与Schnet
图神经网络在材料中应用的实践
自定义图的实现:第三方依赖 - PyG 图卷积层:GCNConv
强化学习在材料优化问题中的应用
主动学习框架的在科学问题中的实现
生成模型在材料设计中的应用与挑战
Transformer应用——以AlphaFold2为例
以上都是我们需要学习的,慢慢修行吧!
好多要思考的问题>>>>我们又如何应对呢?可以看公众号:"研而有信er " 它这部分的东西还是分析的很透彻的。个人觉得ok
若是你们也感兴趣可以看一下
最后的最后希望我们每一个科研人都能所得即所愿,沿路坦途!加油吧~!