目前主要方法有:
- 基于统计:统计词频,位置等信息,计算句子权值,再简选取权值高的句子作为文摘,特点:简单易用,但对词句的使用大多仅停留在表面信息。
- 基于图模型:构建拓扑结构图,对词句进行排序。例如,TextRank/LexRank
- 基于潜在语义:使用主题模型,挖掘词句隐藏信息。例如,采用LDA,HMM
- 基于整数规划:将文摘问题转为整数线性规划,求全局最优解。
TextRank 算法是一种用于文本的基于图的排序算法。其基本思想来源于谷歌的 PageRank算法, 通过把文本分割成若干组成单元(单词、句子)并建立图模型, 利用投票机制对文本中的重要成分进行排序, 仅利用单篇文档本身的信息即可实现关键词提取、文摘。和 LDA、HMM 等模型不同, TextRank不需要事先对多篇文档进行学习训练, 因其简洁有效而得到广泛应用
Textrank:
1、把给定的文本T按照完整句子进行分割,即
2、对于每个句子,进行分词和词性标注处理,并过滤掉停用词,只保留指定词性的单词,如名词、动词、形容词,即,其中是保留后的候选关键词。
3、构建候选关键词图G = (V,E),其中V为节点集,由(2)生成的候选关键词组成,然后采用共现关系(co-occurrence)构造任两点之间的边,两个节点之间存在边仅当它们对应的词汇在长度为K的窗口中共现,K表示窗口大小,即最多共现K个单词。
计算每两个句子之间的相似度:
Si 代表的是第 i 个句子。
wk 代表的是句子中第 k 个单词。
|Si| 代表的是句子中单词的个数。
{ wk| wk ∈ Si & wk ∈ Sj } 代表着同时在 Si 和 Sj 中出现的单词。
举个例子。
I am a fool. A big fool. I like fool.
前两句句子当中都有的单词是 a 和 fool,两个单词。
第一句话和第三句话都有的单词是 I 和 fool。
后两句句子当中都有的单词是 fool .
第一句话长度是 4,第二句话长度是3, 第三句话长度是3.
Similarity(S1,S2) = 2 / ( log(3) + log(4) ) = 0.80
Similarity(S1,S3) = 2 / ( log(3) + log(3) ) = 0.91
Similarity(S2,S3) = 1 / ( log(3) + log(4) ) = 0.40
Similarity(S1,S2) = Similarity(S2,S1)
WS(Vi) 代表的是Vi这个页面的分数
d 代表的是一个阻尼常数 (0<d<1),用来确保每一个页面都至少有 (1-d)的分数。
In(Vi) 代表的是推荐Vi的页面。
Out(Vi) 代表的是Vi推荐的页面。
wji 代表的是 Vi 和 Vj 之间的相似度。
我们拿第一句句子作为例子,看一看它的得分。同样的,初始分数都是 1
WS(V1) = (1 - 0.85) + 0.85 *
( /*第二句句子*/ (0.80 * 1) / (0.80 + 0.40) +
/*第三句句子*/ (0.91 * 1) / (0.91 + 0.40) ) = 1.30
4、根据上面公式,迭代传播各节点的权重,直至收敛。
5、对节点权重进行倒序排序,从而得到最重要的T个单词,作为候选关键词。
6、由5得到最重要的T个单词,在原始文本中进行标记,若形成相邻词组,则组合成多词关键词
Word2vec+TextRank
同过word2vec训练得到词向量,再利用训练得到的词向量得到两个句子之间的相似度(求每个句子中所有单词的平均向量),从而通过迭代可以得到每个句子的权重,进行排序。
LDA+TextRank
利用LDA对文档集进行主题建模和候选关键词的主题影响力计算,将候选关键词的重要性按照主题影响力和邻接关系进行非均匀传递,并构建新的概率转移矩阵用于词图迭代计算和关键词抽取。
一篇文档被表示为K个隐含主题混合分布,每个主题在W个 词语上的多项分布,如上图所示。φ表示主题-词语的概率分布,θ表示文档-词语的概率分布。αβ表示超参数,空心圆表示隐含变量,实心圆表示可观察到的变量。对于文档d来说。ti(w|d)表示该词在文档d中的影响力。文档d由t个主题组成,w在一个主题z中出现概率越大,表明越重要;一个主题z在d中出现概率越大,z越重要,相对来说w也就越重要。所以
φ表示w在z中的概率,θ表示z在d中概率。W在d中的影响力如上式。
C1(d,j)表示d中的词赋给主题j的词数;C2(w,j)表示w赋给主题j的词数。N表示词汇表的大小。
这与textrank计算公式相同。
节点v分为两个部分,一部分为节点的当前重要性,权重为1,并在迭代过程中按照相邻节点的值进行调整,即为TR(Vi);另一部分为节点本身的主题影响力,为TI(Vi)。
这上面参数都是为计算概率转移矩阵的。
初始权重分布。
转移概率矩阵
迭代更新。