大omega记号
Similar to big O notation, big Omega(Ω) function is used in computer science to describe the performance or complexity of an algorithm.
与大O表示法相似,大Omega(Ω)函数在计算机科学中用于描述算法的性能或复杂性。
If a running time is Ω(f(n)), then for large enough n, the running time is at least k⋅f(n) for some constant k. Here’s how to think of a running time that is Ω(f(n)):
如果运行时间为Ω(f(n)),则对于足够大的n,对于某个常数k,运行时间至少为k⋅f(n)。 这是运行时间为Ω(f(n))的思考方式:
We say that the running time is “big-Ω of f(n).” We use big-Ω notation for asymptotic lower bounds, since it bounds the growth of the running time from below for large enough input sizes.
我们说运行时间是“ f(n)的大Ω”。 我们将big-Ω表示法用于渐近下界 ,因为对于足够大的输入大小,它从下面限制了运行时间的增长。
大O和大Ω之间的差异 (Difference between Big O and Big Ω)
The difference between Big O notation and Big Ω notation is that Big O is used to describe the worst case running time for an algorithm. But, Big Ω notation, on the other hand, is used to describe the best case running time for a given algorithm.
Big O表示法和BigΩ表示法之间的区别在于,Big O用于描述算法的最坏情况运行时间。 但是,另一方面,BigΩ表示法用于描述给定算法的最佳情况下运行时间。
更多信息: (More Information:)
大omega记号