合页损失,铰链损失
Hinge Loss is a loss function used in Machine Learning for training classifiers. The hinge loss is a maximum margin classification loss function and a major part of the SVM algorithm.
铰链损失是机器学习中用于训练分类器的损失函数。 铰链损失是最大余量分类损失函数,是SVM算法的主要部分。
The hinge loss function is given by:
铰链损耗函数由下式给出:
LossH = max(0,(1-Y*y))
损耗H = max(0,(1-Y * y))
Where, Y is the Label and, y = 𝜭.x
其中, Y是标签, y = 𝜭.x
This is the general Hinge Loss function and in this tutorial, we are going to define a function for calculating the Hinge Loss for a Single point with given 𝜭. Functions provide the reproducibility and Modularity to the code and therefore we dedicated a separate tutorial for Hinge Loss for Single Point.
这是常规的铰链损耗函数 ,在本教程中,我们将定义一个函数,用于计算给定𝜭的单点的铰链损耗。 函数提供了代码的可重复性和模块化性,因此我们专门为单点铰链损耗提供了单独的教程。
用于单点铰链损耗的Python函数 (Python Function for Hinge Loss for Single Point)
# Linear Algebra Learning Sequence
# Hinge Loss using linear algebra
import numpy as np
# Defining a function for Hingle Loss for Single Point
def hingeforsingle(feature, theta, label):
y = np.matmul(theta/10, feature)
hingeloss = np.max([0.0, (1 - label*y)])
return hingeloss
# Main code
feature = np.array([2,4,4,3,6,9,7,4])
theta = np.array([3,3,3,3,-3,-3,-3,-3])
print('Given point with 8 features : ', feature)
print('Theta : ', theta)
label = 1
hingeloss = hingeforsingle(feature, theta, label)
print("\nThe hinge loss for the given point is :", hingeloss)
Output:
输出:
Given point with 8 features : [2 4 4 3 6 9 7 4]
Theta : [ 3 3 3 3 -3 -3 -3 -3]
The hinge loss for the given point is : 4.8999999999999995
翻译自: https://www.includehelp.com/python/function-for-hinge-loss-for-single-point.aspx
合页损失,铰链损失