线性代数矩阵转置乘法
Prerequisites:
先决条件:
In linear algebra, an mxn matrix A is multiplied with its transpose AT then the resultant matrix is symmetric. This is one of the most common ways to generate a symmetric matrix. There is no such restriction for the dimensionality of Matrix A. In this tutorial, we are going to check and verify this property.
在线性代数中,将mxn矩阵A与其转置A T相乘,然后得到的矩阵是对称的。 这是生成对称矩阵的最常见方法之一。 矩阵A的维数没有这种限制。 在本教程中,我们将检查并验证此属性。
A.AT = S
A T = S
Where, S is a symmetric matrix
其中, S是一个对称矩阵
用于查找矩阵乘积及其转置属性的Python代码 (Python code to find the product of a matrix and its transpose property)
# Linear Algebra Learning Sequence
# Inverse Property A.AT = S [AT = transpose of A]
import numpy as np
M = np.array([[2,3,4], [4,4,8], [4,8,7], [4,8,9] ])
print("---Matrix A---\n", M)
pro = np.dot(M,M.T)
print('\n\nProduct of Matrix A with its Transpose : A * AT = I \n\n', pro)
Output:
输出:
---Matrix A---
[[2 3 4]
[4 4 8]
[4 8 7]
[4 8 9]]
Product of Matrix A with its Transpose : A * AT = I
[[ 29 52 60 68]
[ 52 96 104 120]
[ 60 104 129 143]
[ 68 120 143 161]]
翻译自: https://www.includehelp.com/python/product-of-a-matrix-and-its-transpose-property.aspx
线性代数矩阵转置乘法