线性代数矩阵转置乘法_矩阵的乘积及其转置属性 使用Python的线性代数

线性代数矩阵转置乘法

Prerequisites:

先决条件:

In linear algebra, an mxn matrix A is multiplied with its transpose AT then the resultant matrix is symmetric. This is one of the most common ways to generate a symmetric matrix. There is no such restriction for the dimensionality of Matrix A. In this tutorial, we are going to check and verify this property.

在线性代数中,将mxn矩阵A与其转置A T相乘,然后得到的矩阵是对称的。 这是生成对称矩阵的最常见方法之一。 矩阵A的维数没有这种限制。 在本教程中,我们将检查并验证此属性。

A.AT = S

A T = S

Where, S is a symmetric matrix

其中, S是一个对称矩阵

用于查找矩阵乘积及其转置属性的Python代码 (Python code to find the product of a matrix and its transpose property)

# Linear Algebra Learning Sequence
# Inverse Property A.AT = S  [AT = transpose of A]

import numpy as np

M = np.array([[2,3,4], [4,4,8], [4,8,7], [4,8,9] ])
print("---Matrix A---\n", M)

pro = np.dot(M,M.T)
print('\n\nProduct of Matrix A with its Transpose : A * AT = I \n\n', pro)

Output:

输出:

---Matrix A---
 [[2 3 4]
 [4 4 8]
 [4 8 7]
 [4 8 9]]


Product of Matrix A with its Transpose : A * AT = I 

 [[ 29  52  60  68]
 [ 52  96 104 120]
 [ 60 104 129 143]
 [ 68 120 143 161]]


翻译自: https://www.includehelp.com/python/product-of-a-matrix-and-its-transpose-property.aspx

线性代数矩阵转置乘法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值