线性代数矩阵转置乘法_转置矩阵| 使用Python的线性代数

本文介绍了线性代数中的矩阵转置概念,强调了转置在机器学习算法中的重要性,并提供了两种在Python中实现矩阵转置的方法,通过numpy库进行矩阵运算,最后展示了运算结果。
摘要由CSDN通过智能技术生成

线性代数矩阵转置乘法

Prerequisites:

先决条件:

The transpose of a matrix is a matrix whose rows are the columns of the original. In mathematical terms, A(i,j) becomes A(j,i) in the new matrix. Transpose has an important role in understanding and implementing Machine Learning algorithms. Major usage by Matrix Multiplication.

矩阵的转置是其行是原始列的矩阵。 用数学术语来说, A(i,j )在新矩阵中变为A(j,i) 。 转置在理解和实现机器学习算法中具有重要作用。 矩阵乘法的主要用法。

Transpose a matrix

Method 1:

方法1:

Syntax:  
    transpose_M = M.T
Parameter: 
    Matrix M
Return: 
    MT

Method 2:

方法2:

Syntax:  
    transpose_M = numpy.transpose(M)
Input Parameter: 
    Matrix M
Return: 
    MT

转置矩阵的Python代码 (Python code for transpose matrix)

# Linear Algebra Learning Sequence
# Transpose using different Method

import numpy as np

g = np.array([[2,3,4], [45,45,45]])
print("---Matrix g----\n", g)

# Transposing the Matrix g
print('\n\nTranspose as g.T----\n', g.T)
print('\n\nTranspose as np.tanspose(g)----\n', np.transpose(g))

Output:

输出:

---Matrix g----
 [[ 2  3  4]
 [45 45 45]]


Transpose as g.T----
 [[ 2 45]
 [ 3 45]
 [ 4 45]]


Transpose as np.tanspose(g)----
 [[ 2 45]
 [ 3 45]
 [ 4 45]]


翻译自: https://www.includehelp.com/python/transpose-matrix.aspx

线性代数矩阵转置乘法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值