Liskov替代原理是SOLID原理中的L。 它是由Barbara Liskov创建的,声明:
子类型必须能够替代基本类型。
除了该原理的明显实现(确保子类型具有与基本类型相同的行为)之外,隐式实现还确保子类型具有与基本类型相同的语义行为。
语义定义为:
关于语言或逻辑意义的。
因此,我们定义了类名的含义。 通常,正方形和矩形是通过其数学定义来定义的。 从数学上讲,正方形是四个边长相等的形状。 对于矩形,我们将使用完美矩形的定义,即顶部和底部的长度相等,而左侧和右侧的长度相等的形状。
根据这个定义,我们可以得出结论,正方形的宽度和高度必须相同,而矩形的宽度和高度可以相等,宽度也可以等于高度。
让我们为这些形状创建类,在其中定义宽度和高度。
我们可以看到,在给定情况下, Square
对象可以轻松替换Rectangle
对象。 所有Square
对象都具有与Rectangle
相同的行为。
但是,当我们测试#area()
时,我们可以看到语义上的差异。
由于矩形的高度可以不同于宽度,因此#area()
的结果符合我们的语义定义。
如果我们将Rectangle
替换为Square
则测试将通过,但是Square
对象不再具有我们期望的方式。
因为正方形的宽度和高度不能相同,所以Square
对象破坏了我们的语义定义。 这违反了李斯科夫替代原则。
确保Rectangle
和Square
通过测试并满足LSP的最简单方法是删除第4行。
您可能在想,为什么不在Rectangle
中实现一个可以在Square
覆盖的#setWidth()
函数呢? 这将导致Square
仅共享Rectangle
的接口而不是其行为,从而使抽象成为不必要。 通过删除第4行,我们可以满足LSP的要求,并且可以通过将width
和height
私有来进一步扩展。
结论
在实现继承时,请务必在实现之外坚持类的含义。 这有助于使班级在项目的宏伟计划中变得更加容易理解。
通过合同设计可以帮助确保类遵守LSP的另一种技术。
From: https://dev.to/naomidennis/a-light-introduction-liskov-substitution-principle-295a