Python深度学习-应用

Python深度学习-应用 (Python Deep Learning - Applications)

Deep learning has produced good results for a few applications such as computer vision, language translation, image captioning, audio transcription, molecular biology, speech recognition, natural language processing, self-driving cars, brain tumour detection, real-time speech translation, music composition, automatic game playing and so on.

深度学习在诸如计算机视觉,语言翻译,图像字幕,音频转录,分子生物学,语音识别,自然语言处理,自动驾驶汽车,脑瘤检测,实时语音翻译,音乐等少数应用中产生了良好的结果构图,自动游戏等等。

Deep learning is the next big leap after machine learning with a more advanced implementation. Currently, it is heading towards becoming an industry standard bringing a strong promise of being a game changer when dealing with raw unstructured data.

深度学习是继机器学习之后实现更高级实现的下一个重大飞跃。 当前,它正朝着成为行业标准的方向发展,在处理原始的非结构化数据时,有望成为改变游戏规则的有力保证。

Deep learning is currently one of the best solution providers fora wide range of real-world problems. Developers are building AI programs that, instead of using previously given rules, learn from examples to solve complicated tasks. With deep learning being used by many data scientists, deeper neural networks are delivering results that are ever more accurate.

深度学习是目前针对各种现实问题的最佳解决方案提供商之一。 开发人员正在构建AI程序,而不是使用先前给定的规则,而是从示例中学习以解决复杂的任务。 随着许多数据科学家使用深度学习,更深层的神经网络正在提供更加准确的结果。

The idea is to develop deep neural networks by increasing the number of training layers for each network; machine learns more about the data until it is as accurate as possible. Developers can use deep learning techniques to implement complex machine learning tasks, and train AI networks to have high levels of perceptual recognition.

这个想法是通过增加每个网络的训练层数来开发深度神经网络。 机器会更多地了解数据,直到数据尽可能准确为止。 开发人员可以使用深度学习技术来执行复杂的机器学习任务,并训练AI网络具有高水平的感知识别能力。

Deep learning finds its popularity in Computer vision. Here one of the tasks achieved is image classification where given input images are classified as cat, dog, etc. or as a class or label that best describe the image. We as humans learn how to do this task very early in our lives and have these skills of quickly recognizing patterns, generalizing from prior knowledge, and adapting to different image environments.

深度学习在计算机视觉中很受欢迎。 这里实现的任务之一是图像分类,其中给定的输入图像被分类为猫,狗等,或分类为最能描述图像的类或标签。 作为人类,我们很早就学会了如何执行此任务,并具有快速识别模式,从先验知识中概括并适应不同图像环境的这些技能。

翻译自: https://www.tutorialspoint.com/python_deep_learning/python_deep_learning_applications.htm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值