使用mean-shift方法、隐马尔科夫模型的恋爱指南----用数学指导我们的生活!!!
作者:gubgub [1][2]
[1]xxxx公司
[2]xx小组
开篇
爱情是人类最宝贵的情感,
可是很多人无法拨开迷雾去摘取最美的花。
我曾经为此迷茫,可是突然我发现了科学的力量!!!!
使用数学,揭开了恋爱之门!
作为一个没有多少经验但是掌握了秘诀的人,让我来指导你们吧!
一,确定追求目标
有很多人困扰,身边那么多人,应该选择哪个人呢?谁和我最匹配呢?
那么
1 把你看重的方面列出来,并给自己和身边的人评等级。
用xi表示每个人,那么x1的参数是(身高:A,学历:B,兴趣:A)
2 对于每一个人,可以用特征表示,
有公式可以量化表示,但是我不写了,因为写了你也不会看
3 使用Bhattacharyya系数来衡量两个人的距离
有人问“B@#@#系数是什么?”,不用懂,头脑中有这样一个概念就行
4 我们的目的是寻找和自己“B系数”最大的那个人,
接下来是不是计算每人和自己的距离了呢?
怎么可以这样没有技术含量?!
5 有技术含量的方法是什么样呢?
“经过一系列数学运算,寻找系数最大的点,等价于某个式子最大”
而计算它,正好可以使用mean-shift方法!
6 mean-shift方法的物理意义就是:
从你自己开始,在身边的朋友中选出B系数最大的人,
然后从这个人开始,继续选出B系数最大的……
不断重复上面过程,自然可以找到追匹配的人了
二 察言观色
接触过程中,
两个人往往会隐藏自己真实想法,
导致无法明白对方的心意,
这可如何是好?
别急,有了隐马尔科夫模型,这个问题轻松破解
首先 介绍一个简化的模型:
一个mm有3个状态:开心、厌烦、平静
而我们只能通过mm的语言来推断她的状态
买通mm的闺蜜,可以得知概率矩阵:
矩阵A:
开心 厌烦 平静
开心 0.8 0.1 0.1
厌烦 0.2 0.6 0.2
平静 0.4 0.2 0.4
矩阵B:
“呵呵” “嘿嘿” “滚!” “去死!”
开心 0.2 0.3 0.2 0.3
厌烦 0.4 0.2 0.1 0.3
平静 0.3 0.5 0.1 0.1
以A第一行为例,
mm从此刻开心,到下一时刻开心的概率为0.8
从此刻开心,到下一时刻厌烦的概率为0.1
从此刻开心,到下一时刻平静的概率为0.1
B的第一行意义为:
开心时候说呵呵的概率为0.2,
说嘿嘿的概率为0.3,
说滚的概率为 0.2,
说去死的概率为0.3
我们要做的就是在100个,或者1000个时刻,mm说了什么:
seq = 呵呵-嘿嘿-嘿嘿-滚-……-去死-呵呵
然后通过seq来判断mm最有可能的状态变化
“数学家又一次帮助了我们”
使用viterbi算法,我们就可以知道mm的真实状态了:
开心-开心-厌烦-平静-开心-……-开心-平静-
尾声:
机器猫:“掌握了数学武器,俺不再是那个一只手就能数清楚ex的猫了!
前进!达瓦里希!”
参考文献:
【1】 《融合MeanShift和卡尔曼滤波的运动目标跟踪算法研究》
【2】 若干HMM的论文,忘记名字了
作者:gubgub [1][2]
[1]xxxx公司
[2]xx小组
开篇
爱情是人类最宝贵的情感,
可是很多人无法拨开迷雾去摘取最美的花。
我曾经为此迷茫,可是突然我发现了科学的力量!!!!
使用数学,揭开了恋爱之门!
作为一个没有多少经验但是掌握了秘诀的人,让我来指导你们吧!
一,确定追求目标
有很多人困扰,身边那么多人,应该选择哪个人呢?谁和我最匹配呢?
那么
1 把你看重的方面列出来,并给自己和身边的人评等级。
用xi表示每个人,那么x1的参数是(身高:A,学历:B,兴趣:A)
2 对于每一个人,可以用特征表示,
有公式可以量化表示,但是我不写了,因为写了你也不会看
3 使用Bhattacharyya系数来衡量两个人的距离
有人问“B@#@#系数是什么?”,不用懂,头脑中有这样一个概念就行
4 我们的目的是寻找和自己“B系数”最大的那个人,
接下来是不是计算每人和自己的距离了呢?
怎么可以这样没有技术含量?!
5 有技术含量的方法是什么样呢?
“经过一系列数学运算,寻找系数最大的点,等价于某个式子最大”
而计算它,正好可以使用mean-shift方法!
6 mean-shift方法的物理意义就是:
从你自己开始,在身边的朋友中选出B系数最大的人,
然后从这个人开始,继续选出B系数最大的……
不断重复上面过程,自然可以找到追匹配的人了
二 察言观色
接触过程中,
两个人往往会隐藏自己真实想法,
导致无法明白对方的心意,
这可如何是好?
别急,有了隐马尔科夫模型,这个问题轻松破解
首先 介绍一个简化的模型:
一个mm有3个状态:开心、厌烦、平静
而我们只能通过mm的语言来推断她的状态
买通mm的闺蜜,可以得知概率矩阵:
矩阵A:
开心 厌烦 平静
开心 0.8 0.1 0.1
厌烦 0.2 0.6 0.2
平静 0.4 0.2 0.4
矩阵B:
“呵呵” “嘿嘿” “滚!” “去死!”
开心 0.2 0.3 0.2 0.3
厌烦 0.4 0.2 0.1 0.3
平静 0.3 0.5 0.1 0.1
以A第一行为例,
mm从此刻开心,到下一时刻开心的概率为0.8
从此刻开心,到下一时刻厌烦的概率为0.1
从此刻开心,到下一时刻平静的概率为0.1
B的第一行意义为:
开心时候说呵呵的概率为0.2,
说嘿嘿的概率为0.3,
说滚的概率为 0.2,
说去死的概率为0.3
我们要做的就是在100个,或者1000个时刻,mm说了什么:
seq = 呵呵-嘿嘿-嘿嘿-滚-……-去死-呵呵
然后通过seq来判断mm最有可能的状态变化
“数学家又一次帮助了我们”
使用viterbi算法,我们就可以知道mm的真实状态了:
开心-开心-厌烦-平静-开心-……-开心-平静-
尾声:
机器猫:“掌握了数学武器,俺不再是那个一只手就能数清楚ex的猫了!
前进!达瓦里希!”
参考文献:
【1】 《融合MeanShift和卡尔曼滤波的运动目标跟踪算法研究》
【2】 若干HMM的论文,忘记名字了