目标检测(Object Detection)原理与实现(二)

本文介绍了基于霍夫变换的目标检测原理,包括直线、圆和椭圆的检测,并探讨了霍夫变换的局限性和广义霍夫变换的提出,强调了广义霍夫变换在处理无解析表达式形状时的优势及其参数投票过程。
摘要由CSDN通过智能技术生成

基于霍夫变换和广义霍夫变换的目标检测


        上节讨论了基于阈值处理的目标检测,今天就来讨论下基于霍夫投票的目标检测,霍夫投票打算分成两个小节,第一个小节简单的说下霍夫变换和广义霍夫变换(generalized hough transform),他们投票的权重都是相等的,下一节讨论概率空间中的霍夫投票,顾名思义他们的投票权重是不确定的。

      先来看下霍夫变换(hough transform),霍夫变换一般适用于有解析表达式的几何形状目标检测,例如直线、圆、椭圆等。用个统一的解析表达式来表达他们:f(x,alpha)=0,其中x 是图形上点,alpha则是解析表达式参数,比如欧式坐标系中直线的参数就是斜率m和截距c(或者极坐标系中的theta和ρ),圆的参数则是原点和半径。霍夫变换的核心就是把图像空间的直线变换到参数空间(也叫霍夫空间),比如一个直线y=mx+c,给定一个点(x’,y’),把它代入直线方程,得到y’=mx’+c,其实此时仍然是一条直线(在参数空间的直线,斜率是-x’,截距是y’),图像空间和霍夫空间的对应关系如(图一)所示:

(图一)

     (图一)中左图是图像空间,右图是霍夫空间(参数空间),对于图像空间中线段pq上任意一点带入直线方程后,都可以在霍夫空间中得到另外一条直线,二者是对偶的,比如如(图一)所示,把两个端点带入后,在右图中得到的两个对偶直线,

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值