基于霍夫变换和广义霍夫变换的目标检测
上节讨论了基于阈值处理的目标检测,今天就来讨论下基于霍夫投票的目标检测,霍夫投票打算分成两个小节,第一个小节简单的说下霍夫变换和广义霍夫变换(generalized hough transform),他们投票的权重都是相等的,下一节讨论概率空间中的霍夫投票,顾名思义他们的投票权重是不确定的。
先来看下霍夫变换(hough transform),霍夫变换一般适用于有解析表达式的几何形状目标检测,例如直线、圆、椭圆等。用个统一的解析表达式来表达他们:f(x,alpha)=0,其中x 是图形上点,alpha则是解析表达式参数,比如欧式坐标系中直线的参数就是斜率m和截距c(或者极坐标系中的theta和ρ),圆的参数则是原点和半径。霍夫变换的核心就是把图像空间的直线变换到参数空间(也叫霍夫空间),比如一个直线y=mx+c,给定一个点(x’,y’),把它代入直线方程,得到y’=mx’+c,其实此时仍然是一条直线(在参数空间的直线,斜率是-x’,截距是y’),图像空间和霍夫空间的对应关系如(图一)所示:
(图一)
(图一)中左图是图像空间,右图是霍夫空间(参数空间),对于图像空间中线段pq上任意一点带入直线方程后,都可以在霍夫空间中得到另外一条直线,二者是对偶的,比如如(图一)所示,把两个端点带入后,在右图中得到的两个对偶直线,