读感|深入浅出数据分析(part 1)

读感:这个书是2010年的书,距今已有十多年时间了,大概读到8章左右,感觉一些案例还是非常经典的,竟然和近年发生的一些事件有相似,也是很神奇,历史总是惊人的相似,其中印象最深的是星巴仕案例和蜥蜴流感的案例。好像正好对应着星巴克和新冠似的,不过这只是我自己的一些想法。

整体目录如下所示:

分析工具总是会随着技术更替而更新换代,这个就不必太关注,现在用R的人好像也不太多(勿喷),其实我觉得此书最大的亮点是在具体案例里面向你提出问题,让你跟随案例进行思考,书中有大量的题,可以多写写,同时有参考答案。但参考答案偏白话,整体看上去就是一种思路引导吧。

以我视角大概讲一下,每一章(有印象部分)

1.销售案例(充足数据、对比找不同)

目标:提高销售额

遇到问题:给到了笼统数据,客户对自己的产品并非充分了解,提供了个人很主观信息

解决:补充具体数据,找到了新的消费群体

2.咖啡案例(对照、剔除混杂因素)

这个就是和星巴克很像,就是经济下滑,销量下降,大家觉得不值(这个和现在就是挺像哈)。需要确定哪种可以提高销量(游说、降价),用了控制变量法确定,最后游说更有用(可能这个结论就是不太适宜目前状况)。

3.橡皮鸭和橡皮鱼(线性规划+历史销售趋势)

这个问题就是我感觉就是一个线性规划问题,但是在此基础上有结合历史销量趋势,最后就是判断出两个东西类似于相互替代品,销量是此起彼伏。

4.网站网页分析图表(散点图:探索性工具、因果关系;多元图形:对三个以上变量进行比较;同时展示多张不同维度的同型图片)

这个案例,主要就是讲可视化方面,作图不要花里胡哨,最重要是简洁有效(体现出更多的信息和内容),我还是比较认同的,太复杂的图,不做解释,除了你自己没人知道是什么意思,这种会徒增更多的沟通成本。

5.电肤案例(证伪法)

这个讲个一个方法,大概就是类似于排除法,用所给已知,一一排除可能性较低的选项。

6.蜥蜴流感(贝叶斯)

贝叶斯的话就是比较经典了,概率、优化都会有的

7.投资公司(主观概率、贝叶斯)

主观概率,我愿称之为问卷调查法,简单讲就是问卷调查+贝叶斯后验,就是说其实我感觉方法就是这么个方法,但是换了一种名字,最重要还是知道什么时候该用它就好了,具体讲就是在没钱的情况下。

8.垃圾处理(启发法、快省树)

启发法应该是有很多种,这个的快省树我理解就是流程判断,是或否,这样,最后他这个成功解决也是让我有点不理解,感觉更多就是用在游说上了,就是看怎么说服怎么谈判。。

后面还没看完,等下次补。

感觉贯穿的思想大概是对比,已知推未知(就是偏预测),还有就是心智模型(我理解就是经验模型)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值