10:迷宫问题
总时间限制:-
描述
-
定义一个二维数组:
int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, };
它表示一个迷宫,其中的1表示墙壁,0表示可以走的路,只能横着走或竖着走,不能斜着走,要求编程序找出从左上角到右下角的最短路线。
输入
- 一个5 × 5的二维数组,表示一个迷宫。数据保证有唯一解。 输出
- 左上角到右下角的最短路径,格式如样例所示。 样例输入
-
0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0
样例输出
-
(0, 0) (1, 0) (2, 0) (2, 1) (2, 2) (2, 3) (2, 4) (3, 4) (4, 4)
解题思路:
利用结构体储存当前的坐标x,y和该点的前驱和本身pre,n;本题利用广度搜索向每个可走的方向(这里是四个方向,有的是八个方向)走一步,并记录该点的坐标前驱和本身,最后返回一个终点的本身(n,代表广搜的第n个点),然后利用递归输出前驱坐标。
代码实现:
#include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <map> #include <vector> #include <set> #include <cmath> #include <algorithm> using namespace std; const int maxn = 30; int mp[5][5]; // 地图; int vis[5][5]={0}; // 标记走过与否; int dis[4][2] = { {0,1}, {0,-1}, {1,0}, {-1,0} }; // 可走的四个方向; struct node //记录该点的信息; { int x, y, pre, n; }point[maxn]; int bfs() { point[0] = { 0, 0, -1, 0 }; int cnt=0; queue<node>q; q.push( point[0] ); vis[0][0] = 1; while( !q.empty() ) { node t = q.front(); q.pop(); // 每次取队列第一个元素并释放; int nowx = t.x, nowy = t.y, now = t.n; if( nowx == 4 && nowy == 4) return now; for( int i=0; i<4; i++ ) // 四个方向各走一次; { int gx = nowx + dis[i][0], gy = nowy + dis[i][1]; if( gx >= 0 && gx < 5 && gy >= 0 && gy < 5 && !vis[gx][gy] && !mp[gx][gy]) { point[++cnt] = { gx, gy, now, cnt}; vis[gx][gy] = 1; // 标记该点走过; q.push(point[cnt]); // 将每次去得元素的可走路压入队列; } } } } void dfs( int d ) { if( point[d].n ) dfs( point[d].pre ); // 利用递归找到起点,依次递归输出; printf("(%d, %d)\n" , point[d].x, point[d].y ); } int main() { int i, j; for( i=0; i<5; i++ ) for( j=0; j<5; j++ ) cin >> mp[i][j]; int m =bfs(); dfs(m); return 0; }