R--NaiveBayes

 朴素贝叶斯算法是基于贝叶斯定理和假设条件独立的分类方式。可以说贝叶斯定理是算法的核心。朴素贝叶斯分类器(Naive Bayes Classifier|NBC)发源于古典数学理论,有着坚实的理论基础以及稳定的分类效率,模型所需参数较少,对缺失值不敏感,算法也比较简单。
 先来简单说一下bayes定理:
 P(A|B)=P(B|A)*P(A)/P(B)
 其中P(A|B) :后验概率
    P(B|A) :似然概率
    P(A)   :先验概率
    P(B)   :边际似然概率
  (模型中的这些值都是程序自动计算的)
  算法通过待测对象在个分类中的概率来分类,与其他分类算法相比,朴素贝叶斯更实用于那些,数据变量之间相关性很小的数据集,否则,算法的分类效果没有么好。
 naiveBayes算法在R中的实现:
 R中提供的e1071包中的navieBayes函数
 model <- navieBayes(label~.,data,laplace = ?)
 or  model <- navieBayes(data,label,laplace=?)
 pred <- predict(model,test,[type='class'or'raw'])
 其中label 是因子类型 raw 输出为概率,class输出为label
这里是一个 RDD-based API 的简单 Scala 代码示例,展示如何使用 Apache Spark 中的 MLlib 库来训练一个朴素贝叶斯分类器并输出结果: ```scala import org.apache.spark.mllib.classification.{NaiveBayes, NaiveBayesModel} import org.apache.spark.mllib.util.MLUtils import org.apache.spark.{SparkConf, SparkContext} // 创建 SparkConf 和 SparkContext val conf = new SparkConf().setAppName("NaiveBayesExample") val sc = new SparkContext(conf) // 读取数据集 val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt") // 划分数据集为训练集和测试集 val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3), seed = 1234L) // 训练朴素贝叶斯分类器 val model = NaiveBayes.train(trainingData, lambda = 1.0, modelType = "multinomial") // 在测试集上进行预测 val predictions = testData.map { point => val prediction = model.predict(point.features) (prediction, point.label) } // 计算模型准确率 val accuracy = 1.0 * predictions.filter(r => r._1 == r._2).count() / testData.count() println(s"Test set accuracy = $accuracy") // 输出预测结果 predictions.take(10).foreach(println) // 保存模型 model.save(sc, "myModelPath") // 加载模型 val sameModel = NaiveBayesModel.load(sc, "myModelPath") ``` 你可以将你的数据集替换文中的数据集路径,然后运行代码即可得到训练好的模型和预测结果。需要注意的是,在 RDD-based API 中,我们需要显式地调用 `predict` 方法来进行预测。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值