画像(标签)
- 定义:
用户》》》
全域画像:
整个公司级别的画像数据,一般基础字段多而广,包含公司所有的业务数据,交叉集合数据等等
业务画像:
某个业务模块/产品的画像数据,针对性强,可以和全域画像做对比,找差异点,提升优化运营手段
产品》》》
产品画像:
产品的各项特征,使用场景,功能,渠道等等,主要可以用于和用户画像做交叉推荐
- 构建画像
数据收集:有各种途径,注册数据,埋点的行为数据,消费数据,内容交互数据等
维度拆解:根据需求先定义大类别的维度标签,常见例如:
人口属性——基本人口地理类数据(一般不常变动)
消费需求——消费习惯,偏好
购买能力——收入,资产,负债,消费渠道,单价
兴趣爱好——内容偏好,交互频次,个人兴趣
社交关系——活跃场景,辐射用户数,常用APP等
画像粒度:针对不同的使用需求会有不同的标签展现 形式,有抽象化和具象化的标签
画像层级:基础属性——》基础行为——》浅层画像(全域)——》深层画像(业务画像)
- 画像分类
静态画像:实时性弱,覆盖面广,粒度粗,一般都是离线计算的,(这种业务场景一般对实时性要求不高,更注重长期的标签组合,例如金融业务类的理财,借贷等)
动态画像:又叫实时标签,时效性强,推荐效果好,更侧重短平快的业务场景,例如淘宝的猜你喜欢,头条的推荐等等,能够抓住用户的喜好,但是容易陷入推荐面过窄(需要算法加持调优)
- 画像应用
用户分群:基于不同的标签组合圈定不同人群包,可以定向push、短信、发券等等
个性推荐:根据画像的标签属性和标签预测的产品喜好度,商品锲合度等精准推荐
竞品对比:不同业务的核心用户层区分不同的竞争产品,有的放矢,高效竞争
精细运营:结合生命周期分析提炼各个周期的画像标签做到差异化运营等
- 画像迭代(闭环)
在利用标签做完精准推荐或者差异化运营手段后,要及时将效果数据回流,不断调整模型参数,排除干扰因子,优化迭代,以进一步提升画像的预测效果