画像简述

画像(标签)

  • 定义:

用户》》》

全域画像:

整个公司级别的画像数据,一般基础字段多而广,包含公司所有的业务数据,交叉集合数据等等

业务画像:

某个业务模块/产品的画像数据,针对性强,可以和全域画像做对比,找差异点,提升优化运营手段

产品》》》

产品画像:

产品的各项特征,使用场景,功能,渠道等等,主要可以用于和用户画像做交叉推荐

  • 构建画像

数据收集:有各种途径,注册数据,埋点的行为数据,消费数据,内容交互数据等

维度拆解:根据需求先定义大类别的维度标签,常见例如:

人口属性——基本人口地理类数据(一般不常变动)

消费需求——消费习惯,偏好

购买能力——收入,资产,负债,消费渠道,单价

兴趣爱好——内容偏好,交互频次,个人兴趣

社交关系——活跃场景,辐射用户数,常用APP等

画像粒度:针对不同的使用需求会有不同的标签展现 形式,有抽象化和具象化的标签

画像层级:基础属性——》基础行为——》浅层画像(全域)——》深层画像(业务画像)

  • 画像分类

静态画像:实时性弱,覆盖面广,粒度粗,一般都是离线计算的,(这种业务场景一般对实时性要求不高,更注重长期的标签组合,例如金融业务类的理财,借贷等)

动态画像:又叫实时标签,时效性强,推荐效果好,更侧重短平快的业务场景,例如淘宝的猜你喜欢,头条的推荐等等,能够抓住用户的喜好,但是容易陷入推荐面过窄(需要算法加持调优)

  • 画像应用

用户分群:基于不同的标签组合圈定不同人群包,可以定向push、短信、发券等等

个性推荐:根据画像的标签属性和标签预测的产品喜好度,商品锲合度等精准推荐

竞品对比:不同业务的核心用户层区分不同的竞争产品,有的放矢,高效竞争

精细运营:结合生命周期分析提炼各个周期的画像标签做到差异化运营等

  • 画像迭代(闭环)

在利用标签做完精准推荐或者差异化运营手段后,要及时将效果数据回流,不断调整模型参数,排除干扰因子,优化迭代,以进一步提升画像的预测效果

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值