自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4891)
  • 收藏
  • 关注

转载 L4的算法人才缺口,很大

星球内部的成员来自国内外知名高校实验室、自动驾驶相关的头部公司,其中高校和科研机构包括但不限于:上海交大、北京大学、CMU、清华大学、西湖大学、上海人工智能实验室、港科大、港大、南洋理工、新加坡国立、ETH、南京大学、华中科技大学、ETH等等!公司包括但不限于:蔚小理、地平线、华为、大疆、广汽、上汽、博世、轻舟智航、斑马智行、小米汽车、英伟达、Momenta、百度等等。方向涉及端到端、VLA、数据闭环、云端模型、车端感知、世界模型,以及一些SLAM和规控的需求,其中世界模型、端到端VLA是缺口最大的。

2026-02-06 14:57:41 9

转载 首次,蔚来真盈利了......

和开环RL相比,闭环RL对算力的要求更高,技术难度也更大。在技术层面,蔚来NWM2.0在2026年1月底也已正式推送,主要技术点聚焦在"世界模型+闭环强化学习"上。截至目前,蔚来公司已累计交付新车1024774台。,这是蔚来首次录得单季度经调整经营利润(非公认会计准则)。其中,蔚来品牌交付31897台,同比增长54.8%;,蔚来共交付新车326028台,同比增长46.9%,,蔚来交付新车48135台,同比增长54.6%,从成立至今,蔚来累计交付新车997592台。

2026-02-06 08:53:09 14

原创 对话L4领军人物:L2到L4是否成为可落地的工程现实(斯年智驾/新石器/卡尔动力/北美)

点击下方卡片,关注“自动驾驶之心”公众号戳我-> 领取自动驾驶近30个方向学习路线编辑 | 自动驾驶之心本文只做学术分享,如有侵权,联系删文>>自动驾驶前沿信息获取→自动驾驶之心知识星球本文是1.10日L4大圆桌《自动驾驶L4的冰与火:L2到L4是否成为可落地的工程现实》的文字记录,分享给大家。何贝,斯年智驾创始人、董事长。清华大学博士,原百度无人车科学家。无人驾驶全栈工程师,发表相关论文30余篇、专利100余件。苗乾坤,新石器无人车CTO。毕业于中国科学技术大学,获得工学博士学位,在人工智能和计算机领域发

2026-02-05 19:08:13 370

原创 英伟达最新FastDriveCoT!CoT思维链推理加速3-4倍...

实验结果表明,FastDriveCoT在多种视觉-语言模型(VLM)和大语言模型(LLM)架构及规模下,均实现了显著的思维链推理速度提升(3-4倍),同时保留了思维链带来的下游任务性能改善,包括元动作预测准确性和轨迹生成质量的提升。表1进一步表明,引入思维链对元动作和轨迹生成均带来显著收益:在Qwen2.5-VL 3B模型的3秒轨迹预测任务中,性能提升最为明显——平均位移误差(ADE)从无思维链基线的0.617降至自回归思维链的0.511,FastDriveCoT的并行解码思维链进一步降至0.482;

2026-02-05 08:48:49 317

转载 吉利反超比亚迪

长城汽车1月销量9万辆,同比增长11.59%,其中WEY品牌7873辆,同比增长57.24%,在旗下五大品牌中涨幅最高。但吉利汽车于2月1日晚间披露的1月销量数据显示,其当月乘用车销量达27.02万辆,同比增长1.29%,环比增长14.08%,成为目前唯一实现同环比正增长的企业,并借此反超比亚迪,登顶当月“销冠”。乘联分会认为,1月车市环比大幅下滑几成定局——初步推算1月狭义乘用车零售总市场预计为180万辆左右,环比下降20.4%,同比持平微增,其中新能源零售预计为80万辆左右,渗透率44.4%。

2026-02-05 08:48:49 19

转载 哈啰入局Robotaxi,如何凭一段式端到端弯道超车?

前两天,Waymo拿下了自动驾驶史上最大的一笔融资 — 160亿美元,2025年国内L4赛道融资也突破了300亿,其中哈啰Robotaxi完成了超30亿元的战略融资。从25年6月成立伊始,哈啰自动驾驶便锚定一段式端到端上车。在25年上半年来看,这是哈啰自动驾驶的一场“豪赌”。但不是用了一段式端到端,落地就能做好,这里面要踩的坑太多了,尤其是在Robotaxi上的验证还处于初期的阶段。但从现在来看,一段式端到端的落地方向是正确的,并且已经在乘用车做过大量验证。,深入探讨哈啰自动驾驶技术发展背后的故事。

2026-02-04 11:01:53 39

转载 哈啰为何有胆识下场做一段式端到端的Robotaxi?

但站在26年初,一段式端到端已经在乘用车上奠定了毋庸置疑的技术地位。但不是一段式端到端用了就好,这里面要踩的坑太多了,尤其是在Robotaxi上的验证还处于初期的阶段。从25年6月成立伊始,便锚定一段式端到端上车。在25年上半年来看,这是哈啰自动驾驶的一场“豪赌”。自动驾驶之心独家专访哈啰Robotaxi联合创始人 — 于乾坤博士。完整版深度内容已独家上线知识星球「,深入探讨哈啰自动驾驶技术发展背后的故事。Gloria:自动驾驶之心联创。>>直播和内容获取转到 →。一场关于“造父”的远征。

2026-02-02 15:05:00 54

原创 <span class=“js_title_inner“>小鹏Drive-JEPA:结合JEPA的世界模型端到端框架,最新SOTA!</span>

值得注意的是,仅使用单目前视摄像头和轻量级Transformer规划器,本文的V-JEPA预训练模型在perception-free设置下比现有工作高出3个PDMS,突显了V-JEPA预训练在规划任务中的有效性。其次,我们引入多模态轨迹蒸馏技术,将模拟器中的知识蒸馏到proposal-centric规划器中,提供超越单一人类轨迹的多样化监督,从而实现更安全的多模态决策。如表2所示,无论主干网络规模如何,我们的方法均大幅超越现有方法,PDMS甚至接近依赖感知标注的最先进方法,突显了V-JEPA预训练的优势。

2026-02-02 08:52:00 985

原创 小鹏Drive-JEPA:结合JEPA的世界模型端到端框架,最新SOTA!

值得注意的是,仅使用单目前视摄像头和轻量级Transformer规划器,本文的V-JEPA预训练模型在perception-free设置下比现有工作高出3个PDMS,突显了V-JEPA预训练在规划任务中的有效性。其次,我们引入多模态轨迹蒸馏技术,将模拟器中的知识蒸馏到proposal-centric规划器中,提供超越单一人类轨迹的多样化监督,从而实现更安全的多模态决策。如表2所示,无论主干网络规模如何,我们的方法均大幅超越现有方法,PDMS甚至接近依赖感知标注的最先进方法,突显了V-JEPA预训练的优势。

2026-02-02 08:52:00 1026

转载 可直推 | 零一汽车招聘(端到端/大模型/规控/部署/SLAM等)

负责自动驾驶算法、功能模块的集成实现、工程化改造与实车部署,开发支持跨平台(x86/arm)的统一工程链路,并确保链路可快速调试与部署。推进工程规范、性能优化、内存与日志管理等专项工作,定位并解决系统级崩溃、性能瓶颈、线程安全等复杂问题,主导关键模块的工程重构。扎实掌握C++编程,熟悉C++11/14/17/20标准,理解内存模型、智能指针、多线程编程,熟悉STL与现代模板编程。多模态模型优化经验,熟悉VLM、VLA、DiT等模型的轻量化部署与加速方法,具备量化、剪枝、蒸馏、投机解码等实战经历;

2026-02-01 20:11:48 28

转载 <span class=“js_title_inner“>端到端VLA壁垒,被打下来了......</span>

通过对前沿 SOTA 模型(如 AutoVLA, DriveLM, UniAD)的深度拆解 ,本课程将指导学生掌握如何构建严谨的研究架构、设计对比实验以及撰写具备学术竞争力的自动驾驶论文。最近有同学后台留言,导师不熟悉这个领域,都是自己趟坑,从数据到算法,再到训练,一直跑不出效果,也没好的idea~获得对经典及前沿的典型论文的分析方法,理解重点算法与原理、清晰不同算法的优劣势,也促使自己对研究idea的思考;通过本课程的学习,你将不再仅仅是新技术的追随者,而将成为具备定义下一代智能驾驶系统能力的开拓者。

2026-02-01 14:04:47 26

转载 L4公司,也在入场端到端......

星球内部的成员来自国内外知名高校实验室、自动驾驶相关的头部公司,其中高校和科研机构包括但不限于:上海交大、北京大学、CMU、清华大学、西湖大学、上海人工智能实验室、港科大、港大、南洋理工、新加坡国立、ETH、南京大学、华中科技大学、ETH等等!针对2025年最火的自动驾驶VLA,我们详细梳理了最新的综述、VLA开源数据集、作为语言解释器的相关算法、模块化VLA、端到端VLA和推理增强VLA,更有诸多关于VLA量产的讨论,在这里有你想知道的一切~这是一个认真做内容的社区,一个培养未来领袖的地方。

2026-01-31 11:07:28 26

转载 谁杀死了毫末智行?

让魏建军震怒的,并不只是毫末智行内部管理的混乱,更在于一个他难以接受的事实——毫末北京、上海的研发团队,长期未向保定团队共享软件源代码,此事成为毫末失去长城信任的导火索。站在长城汽车的视角,造成如今局面,完全是“干儿子”自己的问题,与长城汽车这个“干爸”无关,因为在这其中,毫末智行只是一个供应商。在长城汽车将中高阶辅助驾驶项目全部交由其他自动驾驶公司负责后,所有股东已经清楚认识到毫末智行难以扭转局面,股东们的主要诉求是尽快退出,希望与魏建军召开一次董事会,协商毫末智行的妥善处理方案,但双方迟迟未能见面。

2026-01-31 11:07:28 48

转载 <span class=“js_title_inner“>没想到,Momenta单月智驾搭载量近9万了......</span>

而强化学习是一个有效的途径,当下各种叠Reward的方式是现状,也会造成冲突的情况,但我认为强化学习是通往L3/L4智驾最正确的道路。:Momenta针对法规场景做了很多的优化,交付前一把搞定欧标/美标/中标三份标定,一套OTA,这不仅能大幅提升交付周期,也能省去研发很多的精力,这一点和很多缝缝补补的小公司差距很大;:这是最正确的一条道路,很多做一段式端到端顺利的公司,底子都是数据闭环做的好,才能在短时间堆积起来千万clips的训练数据。在26年L4爆发的起点,Momenta应该会吃到更多的红利。

2026-01-30 11:02:19 17

转载 没想到,Momenta单月智驾搭载量近9万了......

而强化学习是一个有效的途径,当下各种叠Reward的方式是现状,也会造成冲突的情况,但我认为强化学习是通往L3/L4智驾最正确的道路。:Momenta针对法规场景做了很多的优化,交付前一把搞定欧标/美标/中标三份标定,一套OTA,这不仅能大幅提升交付周期,也能省去研发很多的精力,这一点和很多缝缝补补的小公司差距很大;:这是最正确的一条道路,很多做一段式端到端顺利的公司,底子都是数据闭环做的好,才能在短时间堆积起来千万clips的训练数据。在26年L4爆发的起点,Momenta应该会吃到更多的红利。

2026-01-30 11:02:19 47

转载 <span class=“js_title_inner“>华为为什么在自驾VLA模型上悄无声息?</span>

所有内容,先变成语言对环境的描述,然后输入到一个(尺寸不算大)的大模型中,让这个大模型判断怎么开车,然后画出来行车轨迹。虽然大模型是否具备真正的理解能力还有争议,但相较于上面的端到端仅有相关性没有因果性的理解,大模型起码知道,红灯应该停。大模型,特别是中小参数模型性能的飞速增长,意味着在VLA中的这个“L”的能力,也可以飞速增长。VLA的优点在于,在架构中增加了大模型,具备一定现实理解能力,是当下端到端技术探索的新路线。但VLA的缺点在于,对于硬件的要求,模型能力的上限,都受到了约束。

2026-01-30 09:08:56 26

转载 <span class=“js_title_inner“>自动驾驶之心春节活动来啦(2.1-2.23)</span>

自动驾驶之心春节优惠活动来了!本次活动持续时间为2.1-2.23号。自驾大班课程、硬件类+求职小班课程;自动驾驶之心知识星球;

2026-01-30 09:08:56 21

转载 自动驾驶之心春节活动来啦(2.1-2.23)

自动驾驶之心春节优惠活动来了!本次活动持续时间为2.1-2.23号。自驾大班课程、硬件类+求职小班课程;自动驾驶之心知识星球;

2026-01-30 09:08:56 17

原创 上交自动驾驶3D重建综述!从NeRF到3DGS的全面调研(T-ITS‘25)

具体而言,车辆首先被映射到局部 canonical frame 中,在该坐标系下学习稳定的几何和外观表示,而其在全局场景中的运动则通过刚体变换进行建模。相比之下,点云表示以稀疏方式直接采样物体表面,具有较高的几何精度和良好的存储效率,并且与 LiDAR 传感器数据天然对齐,但由于缺乏显式拓扑结构,其在连续表面建模、光照表达和高质量渲染方面能力受限。本文从3D重建的基础知识,到自动驾驶应用相关的重建任务,再到应用落地前景,对学习式3D重建任务在自动驾驶领域相关的论文进行了系统的梳理。方面仍有广阔的探索空间。

2026-01-29 18:00:45 745

转载 聚焦端到端的公司和高校,越来越多了......

通过对前沿 SOTA 模型(如 AutoVLA, DriveLM, UniAD)的深度拆解 ,本课程将指导学生掌握如何构建严谨的研究架构、设计对比实验以及撰写具备学术竞争力的自动驾驶论文。最近有同学后台留言,导师不熟悉这个领域,都是自己趟坑,从数据到算法,再到训练,一直跑不出效果,也没好的idea~获得对经典及前沿的典型论文的分析方法,理解重点算法与原理、清晰不同算法的优劣势,也促使自己对研究idea的思考;通过本课程的学习,你将不再仅仅是新技术的追随者,而将成为具备定义下一代智能驾驶系统能力的开拓者。

2026-01-29 18:00:45 31

原创 上交自动驾驶3D重建综述!从NeRF到3DGS的全面调研(T-ITS‘25)

具体而言,车辆首先被映射到局部 canonical frame 中,在该坐标系下学习稳定的几何和外观表示,而其在全局场景中的运动则通过刚体变换进行建模。相比之下,点云表示以稀疏方式直接采样物体表面,具有较高的几何精度和良好的存储效率,并且与 LiDAR 传感器数据天然对齐,但由于缺乏显式拓扑结构,其在连续表面建模、光照表达和高质量渲染方面能力受限。本文从3D重建的基础知识,到自动驾驶应用相关的重建任务,再到应用落地前景,对学习式3D重建任务在自动驾驶领域相关的论文进行了系统的梳理。方面仍有广阔的探索空间。

2026-01-29 18:00:45 904

转载 <span class=“js_title_inner“>聚焦端到端的公司和高校,越来越多了......</span>

通过对前沿 SOTA 模型(如 AutoVLA, DriveLM, UniAD)的深度拆解 ,本课程将指导学生掌握如何构建严谨的研究架构、设计对比实验以及撰写具备学术竞争力的自动驾驶论文。最近有同学后台留言,导师不熟悉这个领域,都是自己趟坑,从数据到算法,再到训练,一直跑不出效果,也没好的idea~获得对经典及前沿的典型论文的分析方法,理解重点算法与原理、清晰不同算法的优劣势,也促使自己对研究idea的思考;通过本课程的学习,你将不再仅仅是新技术的追随者,而将成为具备定义下一代智能驾驶系统能力的开拓者。

2026-01-29 18:00:45 17

原创 <span class=“js_title_inner“>上交自动驾驶3D重建综述!从NeRF到3DGS的全面调研(T-ITS‘25)</span>

具体而言,车辆首先被映射到局部 canonical frame 中,在该坐标系下学习稳定的几何和外观表示,而其在全局场景中的运动则通过刚体变换进行建模。相比之下,点云表示以稀疏方式直接采样物体表面,具有较高的几何精度和良好的存储效率,并且与 LiDAR 传感器数据天然对齐,但由于缺乏显式拓扑结构,其在连续表面建模、光照表达和高质量渲染方面能力受限。本文从3D重建的基础知识,到自动驾驶应用相关的重建任务,再到应用落地前景,对学习式3D重建任务在自动驾驶领域相关的论文进行了系统的梳理。方面仍有广阔的探索空间。

2026-01-29 18:00:45 764

原创 上交自动驾驶3D重建综述!从NeRF到3DGS的全面调研(T-ITS‘25)

具体而言,车辆首先被映射到局部 canonical frame 中,在该坐标系下学习稳定的几何和外观表示,而其在全局场景中的运动则通过刚体变换进行建模。相比之下,点云表示以稀疏方式直接采样物体表面,具有较高的几何精度和良好的存储效率,并且与 LiDAR 传感器数据天然对齐,但由于缺乏显式拓扑结构,其在连续表面建模、光照表达和高质量渲染方面能力受限。本文从3D重建的基础知识,到自动驾驶应用相关的重建任务,再到应用落地前景,对学习式3D重建任务在自动驾驶领域相关的论文进行了系统的梳理。方面仍有广阔的探索空间。

2026-01-29 18:00:45 693

原创 文远WeRide GENESIS世界模拟器方案解析

问题在于,离线回传的场景已经固定,实车测试又没办法完全复刻当时的问题场景(车祸/行人碰撞等极端安全场景),所以就需要依赖3DGS的编辑能力,沿着自车的新轨迹继续前行,也就是新视角的重建。,我们的‘AI司机’可以在几分钟内熟悉全球任意城市的驾驶环境,为自动驾驶的全球商业化部署奠定了坚实的技术基础,这对行业来说是一次真正的能力飞跃。在自车左右平移的过程中,以及他车经过自车的时候,可以比较明显的看出3D Gaussian的“伪影”。这是3DGS算法所独有的,这是因为高斯椭球会尽可能的拟合见过的场景,

2026-01-29 11:59:45 336

原创 <span class=“js_title_inner“>文远WeRide GENESIS世界模拟器方案解析</span>

问题在于,离线回传的场景已经固定,实车测试又没办法完全复刻当时的问题场景(车祸/行人碰撞等极端安全场景),所以就需要依赖3DGS的编辑能力,沿着自车的新轨迹继续前行,也就是新视角的重建。,我们的‘AI司机’可以在几分钟内熟悉全球任意城市的驾驶环境,为自动驾驶的全球商业化部署奠定了坚实的技术基础,这对行业来说是一次真正的能力飞跃。在自车左右平移的过程中,以及他车经过自车的时候,可以比较明显的看出3D Gaussian的“伪影”。这是3DGS算法所独有的,这是因为高斯椭球会尽可能的拟合见过的场景,

2026-01-29 11:59:45 294

转载 突发!理想再度调整研发架构,自动驾驶部门将被重组......

自动驾驶团队将被并入到勾晓菲负责的软件本体团队。此次调整后,他将统筹理想智能座舱和智能驾驶研发。,此前自动驾驶高级副总裁郎咸朋将成为硬件本体负责人,主要负责机器人研发,将向理想汽车总裁马东辉汇报,不再负责自动驾驶。据悉,理想汽车将研发体系重组为三大团队:基座模型团队、软件本体团队、硬件本体团队,调整的重点是自动驾驶团队被拆分。此外,詹锟将领导基座模型团队,负责统筹 VLA 和自研芯片融合,詹锟向理想汽车 CTO 谢炎汇报。据雷峰网《新智驾》报道,理想汽车将开启新一轮组织架构调整,这一轮将重组研发体系。

2026-01-28 22:48:09 67

转载 <span class=“js_title_inner“>突发!理想再度调整研发架构,自动驾驶部门将被重组......</span>

自动驾驶团队将被并入到勾晓菲负责的软件本体团队。此次调整后,他将统筹理想智能座舱和智能驾驶研发。,此前自动驾驶高级副总裁郎咸朋将成为硬件本体负责人,主要负责机器人研发,将向理想汽车总裁马东辉汇报,不再负责自动驾驶。据悉,理想汽车将研发体系重组为三大团队:基座模型团队、软件本体团队、硬件本体团队,调整的重点是自动驾驶团队被拆分。此外,詹锟将领导基座模型团队,负责统筹 VLA 和自研芯片融合,詹锟向理想汽车 CTO 谢炎汇报。据雷峰网《新智驾》报道,理想汽车将开启新一轮组织架构调整,这一轮将重组研发体系。

2026-01-28 22:48:09 16

原创 浙大&华为一篇前馈式GS算法,比特斯拉快了近20倍...

想象一下,若要覆盖1000个不同交通场景,仅重建环节就需要数月时间,根本无法跟上算法迭代的节奏。更令人惊叹的是视图外推能力——在1米车道偏移的极端场景下,EVolSplat4D的KID(核 inception距离)仅0.062,远低于STORM的0.104,意味着即使是未见过的视角,也能生成真实可信的渲染结果。实验证明,该分支能精准还原车辆的运动轨迹,即使在80%图像缺失的稀疏输入下,仍能避免运动模糊和轮廓扭曲,在Waymo数据集上的LPIPS(感知相似度)仅0.121,远优于STORM的0.182。

2026-01-28 19:14:10 642

转载 为什么今年会有如此多的端到端VLA工作?

此外,还与多家智能驾驶企业有关算法方面的合作,涉及端到端感知、多任务学习、传感器多模态融合及占用预测等自动驾驶技术的应用。传统的模块化流水线因其在复杂长尾场景下的脆弱性逐渐遇到瓶颈 ,而“视觉-语言-动作(VLA)模型“通过统一感知、推理与规划,开启了迈向完全自动驾驶的新纪元。最近有同学后台留言,导师不熟悉这个领域,都是自己趟坑,从数据到算法,再到训练,一直跑不出效果,也没好的idea~获得对经典及前沿的典型论文的分析方法,理解重点算法与原理、清晰不同算法的优劣势,也促使自己对研究idea的思考;

2026-01-28 19:14:10 54

转载 <span class=“js_title_inner“>为什么今年会有如此多的端到端VLA工作?</span>

此外,还与多家智能驾驶企业有关算法方面的合作,涉及端到端感知、多任务学习、传感器多模态融合及占用预测等自动驾驶技术的应用。传统的模块化流水线因其在复杂长尾场景下的脆弱性逐渐遇到瓶颈 ,而“视觉-语言-动作(VLA)模型“通过统一感知、推理与规划,开启了迈向完全自动驾驶的新纪元。最近有同学后台留言,导师不熟悉这个领域,都是自己趟坑,从数据到算法,再到训练,一直跑不出效果,也没好的idea~获得对经典及前沿的典型论文的分析方法,理解重点算法与原理、清晰不同算法的优劣势,也促使自己对研究idea的思考;

2026-01-28 19:14:10 20

转载 BigBite解析,Tesla FSD就是一个端到端大模型

而那种原文所谓的根据人工设计的规则完全切换一套独立的小模型的方式不仅不端到端,甚至实际很难实现,因为在场景切换的过程中很难保证前后模型输出的轨迹可以平滑连接,必然会造成很不舒适甚至危险的情况。质疑FSD不是一个大型网络的主要观点在于green发现FSD有数百个神经网络参数相关的文件,并且其总规模相当大,HW3上的v12.6上A核1.2GB,B核2.3GB,HW4上的v13则达到A核2.3GB,B核7.5GB,其中A核包含189个参数文件,B核110个,其中61个共享。》,引起了大家很广泛的讨论。

2026-01-27 17:38:33 54

转载 李想临时召开线上公司全员会,或将全面转型具身和AI......

据一见Auto报道,1月26日上午10点半,理想汽车CEO李想召开了一场不一样的线上全员会。并研发团队进行新一轮调整,三大新团队:基座模型团队、软件本体团队、硬件本体团队等进行划分,其中汽车、机器人等都归为硬件本体团队。据悉,自动驾驶的VLA研发团队会全部划入到基座模型下。同时布局基座模型、芯片、操作系统、具身智能等业务的公司,最终全球不会超过3家,理想汽车会努力成为其中一家。在上述重要的时间节点之外,李想还明确了一点:在汽车之外,理想一定会做人形机器人,并会尽快落地亮相。但汽车团队确认划入硬件本体团队。

2026-01-27 10:59:43 49

原创 轻舟智航L2/L4智驾方案解析:一段式、VLA和世界模型

有两个算法也推荐一下,Diffusion Planner和Flow Planner,Flow Planner是Diffusion Planner的改进版本,是清华AIR詹仙园老师团队下面的工作。这一套架构整体上来说,其实不复杂,难的是在J6M 128TOPS的算力上实现。下图是L2实车的表现,严重错位道路和复杂路口的无保护左转,效果都很不错。多模态的世界解码器和语言推理互相交互,要能够强对齐,这一点也是VLA的核心,否则幻觉很严重。最后是强化学习微调自车轨迹,和上面一段式一样,判断是给端到端兜底的模块。

2026-01-26 15:15:59 660

原创 对话复旦贾萧松教授 | 从端到端、RL再到仿真,做有用的研究比刷SOTA更难但更有趣

点击下方卡片,关注“自动驾驶之心”公众号戳我-> 领取自动驾驶近30个方向学习路线>>自动驾驶前沿信息获取→自动驾驶之心知识星球编辑 | 自动驾驶之心作为端到端自动驾驶研究浪潮中的一名前沿探索者,他的研究之路始终围绕行业痛点并领先热点一步。从 2021 年开始以端到端自动驾驶作为博士研究课题,到2023年将基于世界模型的强化学习(Model-based RL)应用于自动驾驶,再到2024年开发闭环评测基准与生成式仿真,他的每一步选择都体现着他和合作者们对行业技术趋势的敏锐洞察和稳步布局。他就是贾萧松,目前在

2026-01-26 08:30:56 622

转载 聚焦端到端的公司,越来越多了......

星球内部的成员来自国内外知名高校实验室、自动驾驶相关的头部公司,其中高校和科研机构包括但不限于:上海交大、北京大学、CMU、清华大学、西湖大学、上海人工智能实验室、港科大、港大、南洋理工、新加坡国立、ETH、南京大学、华中科技大学、ETH等等!针对2025年最火的自动驾驶VLA,我们详细梳理了最新的综述、VLA开源数据集、作为语言解释器的相关算法、模块化VLA、端到端VLA和推理增强VLA,更有诸多关于VLA量产的讨论,在这里有你想知道的一切~这是一个认真做内容的社区,一个培养未来领袖的地方。

2026-01-25 18:04:34 72

转载 英伟达的汽车生意经

在过去两年里,已经至少有三家中国客户基于英伟达的开源框架,构建了自己的数据标注流水线,这种早期采纳者形成的网络效应,是任何竞争对手都难以撼动的。英伟达的汽车棋局已非常清晰:以全栈软硬件平台为基座,以深度工程服务为粘合剂,以战略级开源为生态加速器,最终驱动全球汽车产业对算力的饥渴消费。车企,尤其是那些自研算法但经验尚浅的团队,虽然有算法团队,但缺乏在英伟达平台上开发和优化的经验。第一,降低行业门槛,做大生态蛋糕。这笔费用的本质,是英伟达派驻工程师团队,深度参与车企的量产项目,帮助他们将算法在英伟达平台上。

2026-01-24 10:53:36 73

转载 汽车工程师在焦虑中释怀的2025年

作为个人,我们在这种经济不确定增大的过程中要用一种积极的态度去面对风险,用一种消极的太对去面对诱惑,前面的坑太多了,到处都想着割韭菜下套,但是你又不能完全躺平,这个社会的机制是逼着你往前走的,这就意味这我们要把主要的精力拿来面对危机和挑战,而非去谋求发展和承担责任,历史和实践告诉我们:责任是担不起的,担了责任的人都被开除了,奉献也是奉献不起的,奉献厉害的人都被抽空了。这正是对抗内耗和焦虑最好的办法。>>国内首个自动驾驶全栈交流社区。世界模型与自动驾驶小课程!编辑 | 自动驾驶之心。作者 | 小皮@知乎。

2026-01-24 10:53:36 58

转载 自驾有这方面经验的同学,在具身很抢手

星球内部的成员来自国内外知名高校实验室、自动驾驶相关的头部公司,其中高校和科研机构包括但不限于:上海交大、北京大学、CMU、清华大学、西湖大学、上海人工智能实验室、港科大、港大、南洋理工、新加坡国立、ETH、南京大学、华中科技大学、ETH等等!针对2025年最火的自动驾驶VLA,我们详细梳理了最新的综述、VLA开源数据集、作为语言解释器的相关算法、模块化VLA、端到端VLA和推理增强VLA,更有诸多关于VLA量产的讨论,在这里有你想知道的一切~这是一个认真做内容的社区,一个培养未来领袖的地方。

2026-01-23 14:26:50 63

转载 自驾下半场,评测的重要性会超过训练......

模型的训练过程存在不确定性,不是一个线性过程,下半场是如何进行有效评估出模型真正的迭代,开发新的评估方式或任务,以衡量真实世界的效用,也就是打造真正能用的产品。:在RL推荐的动作选择阶段,加入规则先验过滤,例如,排除违规物品、限制同一物品的推荐频率、保证推荐列表的品类多样性;:将RL的状态空间设计为融合用户长短期行为先验的特征向量,例如,用LSTM提取用户短期行为序列先验,用用户历史长期偏好(如长期喜欢的电影类型)作为正则项,约束RL智能体的推荐决策,平衡“探索新物品”和“匹配已知兴趣”。

2026-01-23 14:26:50 53

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除