CoMaL: Good Features to Match on Object Boundaries

36 篇文章 0 订阅

CVPR 2016 用于匹配的边界位置角点特征提取

CoMaL: Good Features to Match on Object Boundaries

本文主要在物体边缘位置找出适合于匹配跟踪的好的特征。传统的特征方法在物体边缘位置效果不好,主要是因为背景在变化。如下图所示:

这里写图片描述

本文针对物体边缘位置,利用 Maximally Stable Extremal Regions(MSER) 提出了 Maximally-stable Level Line Segments 。首先说一下 level lines (curves connecting points with the same intensity) 就是灰度值一样的像素点连成的线叫 level line。

这里写图片描述

接着我们寻找稳定的 level lines,每个 level line的稳定性是可以量化的 。 如下图所示:

这里写图片描述

找出 Maximally Stable Level Lines 之后,我们在这些最大稳定水平线上找出适合于匹配的角点, Corners on Maximally-stable Level Line Segments (CoMaL)

这里写图片描述

通常我们分别匹配 Maximally Stable Level Lines 两侧的区域,去相似度较大的那一侧,这样可以把背景变化的影响消除。

该特征比较适用于车辆检测跟踪,因为一般来说车身纹理相对较少,可以找出 Maximally Stable Level Lines 。

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值