CVPR 2016 用于匹配的边界位置角点特征提取
CoMaL: Good Features to Match on Object Boundaries
本文主要在物体边缘位置找出适合于匹配跟踪的好的特征。传统的特征方法在物体边缘位置效果不好,主要是因为背景在变化。如下图所示:
本文针对物体边缘位置,利用 Maximally Stable Extremal Regions(MSER) 提出了 Maximally-stable Level Line Segments 。首先说一下 level lines (curves connecting points with the same intensity) 就是灰度值一样的像素点连成的线叫 level line。
接着我们寻找稳定的 level lines,每个 level line的稳定性是可以量化的 。 如下图所示:
找出 Maximally Stable Level Lines 之后,我们在这些最大稳定水平线上找出适合于匹配的角点, Corners on Maximally-stable Level Line Segments (CoMaL)
通常我们分别匹配 Maximally Stable Level Lines 两侧的区域,去相似度较大的那一侧,这样可以把背景变化的影响消除。
该特征比较适用于车辆检测跟踪,因为一般来说车身纹理相对较少,可以找出 Maximally Stable Level Lines 。