CNN网络量化 - Quantized Convolutional Neural Networks for Mobile Devices

78 篇文章 0 订阅
36 篇文章 0 订阅

Quantized Convolutional Neural Networks for Mobile Devices

CVPR2016

GitHub code: https://github.com/jiaxiang-wu/quantized-cnn

本文主要是通过对CNN网络的量化,达到压缩模型大小及加快速度的目的,牺牲的准确率比较小。

这里写图片描述

CNN网络在 test phase , 运算时间主要消耗在卷积层,CNN网络的参数主要集中在全连接层。主要在卷积层需要加速,在全连接层压缩参数空间。这里我们采用了 Product quantization 技术。

3 Quantized CNN
3.1. Quantizing the Fully-connected Layer
这里写图片描述

3.2. Quantizing the Convolutional Layer
Similar to the fully-connectedlayer, we pre-compute the look-up tables of inner products with the input feature maps

3.3. Quantization with Error Correction
对每层量化进行误差纠正,避免累计误差太大。

3.4. Computation Complexity

这里写图片描述

the reduction in the computation and storage overhead largely depends on two hyper-parameters, M (number of subspaces) and K (number of sub-codewords in each subspace)

5.1. Results on MNIST
这里写图片描述

5.2. Results on ILSVRC-12
这里写图片描述

5.3. Results on Mobile Devices
这里写图片描述

5.4. Theoretical vs. Realistic Speed-up

这里写图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值