多人姿态估计“Cascaded Pyramid Network for Multi-Person Pose Estimation”

**提出目的**

多人姿态估计主要的挑战来自被遮挡的关键点、不可见的关键点及复杂的背景。论文设计了级联金字塔网络(CPN)用于解决这种问题。算法包含GlobalNet和RefineNet两步。基于FPN,GlobalNet用来检测简单的关键点,RefineNet使用在线关键点挖掘损失检测困难度关键点。

应用:行为识别,人机交互。

主要方法:自下而上的方法:DeepCut, DeeperCut, OpenPose;自上而下方法:G-RMI, Mask RCNN。单人姿态估计:hourglass模型。

可能影响关键点检测的因素分析:行人检测,数据预处理。

**方法描述**

1.行人检测

FPN,ROIAlign代替ROIPooling

2.网络结构

结构图

GlobalNet

浅层分辨率高,但缺少语义信息,深层语义信息丰富但分辨率低。U-shape常用来同时获得较好度分辨率和语义信息。论文使用与FPN相同度特征金字塔结构。GlobalNet定位简单度特在点如眼睛比较容易,但定位下图中的臀部点比较困难。

示意图

RefineNet

与HyperNet类似,在层间传输信息,使用上采样和串联综合不同层的信息。

**实验结果**

MS COCO test-challenge

 

NMS对结果的影响

行人检测对结果的影响

COCO Keypoints-challenge

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值