三元组损失“Deep Metric Learning via Lifted Structured Feature Embedding”

http://www.cnblogs.com/wangxiaocvpr/p/5921074.html

caffe实现解释:https://blog.csdn.net/zziahgf/article/details/78568696

tensorflow实现:http://10.1.2.209/lianjie/install-packages/blob/master/metric_loss_ops.py#L410

caffe实现:https://github.com/rksltnl/Deep-Metric-Learning-CVPR16/

将mini-batch中样本对距离向量(O(m) )提升到距离矩阵(O(m2) ),并基于此定义了一个新的结构化损失函数。

对比损失及triplet loss回归

略。

方法描述

使用训练集中的所有正样本对及负样本对定义结构化损失函数:

J=12Pi,jPmax0,Ji,j2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值