http://www.cnblogs.com/wangxiaocvpr/p/5921074.html
caffe实现解释:https://blog.csdn.net/zziahgf/article/details/78568696
tensorflow实现:http://10.1.2.209/lianjie/install-packages/blob/master/metric_loss_ops.py#L410
caffe实现:https://github.com/rksltnl/Deep-Metric-Learning-CVPR16/
将mini-batch中样本对距离向量(O(m) )提升到距离矩阵(O(m2)
),并基于此定义了一个新的结构化损失函数。
对比损失及triplet loss回归
略。
方法描述
使用训练集中的所有正样本对及负样本对定义结构化损失函数:
J=12Pi,j∈Pmax0,Ji,j2