自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 论坛 (1)

原创 目标检测“Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale Dependent Pooling and”

在Fast-RCNN的基础上,设计了两种改进方法,一是尺度相关的池化SDP用于提升小尺寸物体检测,二是逐层级联拒绝分类器CRC用于提速。尺度相关池化 方法是基于Fast-RCNN的,SDP根据每个proposal的尺寸,从对应的卷积层池化特征。与SDP连接的fc层有与尺寸相关的参数,结构如下图所示: SDP模型的三个分支是conv3,conv4,conv5,每个分支包含2个后续的fc层,ReLU

2016-04-28 11:41:24 2781

原创 目标检测“A MultiPath Network for Object Detection”

对Fast-RCNN方法做了三个小的修改:(1)检测器能够访问多层特征,(2)foveal结构多尺度提取目标上下文信息,(3)在多个IOU下优化损失函数。网络的结构如下图所示; Foveal结构 在目标识别时,上下文信息很重要,为了增加上下文信息,作者增加了4个裁切,即分别对proposal的视图放大1,1.5,2,4倍,每种情况使用ROI-池化生成特组图,接下来的流程共享相同的结构,之后将4个

2016-04-15 10:33:40 2522 3

原创 HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection

提出了一种Proposal提取和目标检测一体的网络,Faster-rcnn中的proposal提取网络RPN由于特征图的粗糙,在小目标及大IOU阈值情况下的检测率低。论文提出了HyperNet,综合低层,中间层和高层特征获得了较高的recall率。HyperNet的示意图如下所示: HyperNet网络结构 先将全图送入卷积层生成激活图,累积多层特征图压缩至归一化空间,即Hyper特征,之后pr

2016-04-12 16:58:19 3397

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除