自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 论坛 (1)

原创 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

TensorFlow实现:https://github.com/Zehaos/MobileNet caffe实现:https://github.com/pby5/MobileNet_CaffeMobileNets用于手机或嵌入式视觉应用,提出使用depthwise separable convolutions 构造轻量化的深度神经网络,并使用两个全局超参数Width Multiplier和Reso

2017-04-27 11:41:22 4990 4

原创 图像分割“Instance-aware Semantic Segmentation via Multi-task Network Cascades”

模型包含三个网络:实例分辨,掩码计算,目标归类。三个网络形成级联的结构。运行时间上,使用VGG-16一张图片需360ms。在MS COCO 2015分割比赛中获取第一名。将instance-aware语义分割分成三个子任务:1.实例分辨,使用类别无关的bbox表示实例;2.掩码估计,估计每个实例的像素级掩码;3.目标分类,预测每个掩码级别实例的类别。论文提出的多任务学习时级联结构,下一阶段依靠上一阶

2017-04-18 16:18:06 2312 2

原创 目标检测“A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection”

如何训练一个目标检测器,对遮挡和形变鲁棒,目前的主要方法是增加不同情况的图像数据,但这些数据有时又特别少。作者提出使用对抗生成有遮挡或形变的样本,这些样本对检测器来说比较困难,使用这些困难的正样本训练可以增加检测器的鲁棒性。与Fast-RCNN比较,在VOC2007上,mAP增加了2.3%,VOC2012上增加了2.6%。不同遮挡或形变的物体如下图所示: Fast-RCNN检测器损失函数有两项,s

2017-04-13 11:41:08 5282 1

原创 车辆检测“DAVE: A Uni ed Framework for Fast Vehicle Detection and Annotation”

检测车辆的同时对车辆进行属性标记,DAVE包括两个网络,一个快速proposal网络FVPN,和一个属性学习网络ALN,属性学习获取车辆的姿态,颜色和类型。DAVE实现的功能如下图所示:快速车辆候选区域提取网络FVPN FVPN是一个浅层全卷积网络,有三个卷积层,最大池化和ReLU与前两个卷积层相连,第三个卷积层分成3个1*1的卷积层分支,conv_fc_class输出正负卷积softmax概率,

2017-04-05 15:24:47 2053 12

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除