自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2)
  • 论坛 (1)

原创 MegDet: A Large Mini-Batch Object Detector

分类网络如ReseNet-50的mini-batch尺寸已经很大了,如8192或16000.但检测网络的mini-batch尺寸确很小,如2-16。小的batch尺寸有什么问题?一是训练时间长,二是无法为BN提供精确的统计信息。三是正负样本比例不平衡,如下图a-b所示。 但是直接增加batch尺寸有什么问题呢?大的batch尺寸需要比较大的学习率去保持精度,但大的学习率通常会导致无法收敛。为...

2018-09-19 15:49:37 270

原创 目标检测“Cascade R-CNN: Delving into High Quality Object Detection”

目前的目标检测器主要使用IOU=0.5定义正负样本,这通常会产生很多接近负样本的检测结果。但检测性能又会随着IOU的提高而下降,主要是由于:1)IOU提高,正样本数量减少,出现训练过拟合;2)检测器最优时IOU与输入假设时inference-time不匹配。论文提出Cascade RCNN解决这个问题,包含多级检测器使用上升的IOU训练。 IOU=0.5训练,会生成较多的噪声框,如fig1(a)...

2018-09-06 16:27:44 753

空空如也

cv_family_z的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也
提示
确定要删除当前文章?
取消 删除