对于一个整数,有如下操作规则:如果n为偶数,将其除以2;如果n为奇数,可以加1或减1;一直处理下去。那么,最终该数会变为1。
例如:当n为7时,可以证明最少需要4次运算
n = 7
n-1 6
n/2 3
n-1 2
n/2 1最终该数会变为1.
现在给出一个整数,求它变为1的最少运算次数。
第一次接触递归,从大局来思考递归。
#include <iostream>
using namespace std;
long long min(long long a, long long b);
long long mintimes(long long n);
int main()
{
long long n;
while(cin >> n)
cout << mintimes(n) << endl;
}
long long min(long long a, long long b)
{
return a > b? b : a;
}
long long mintimes(long long n)
{
if(n == 1) return 0;
if(n == 2) return 1;
if(n % 2==0) return(mintimes(n/2)+1);//n为偶数的时候,只要/2后再+1就是最小次数 (+1是加上/2的操作)
else return(min(mintimes(n-1), mintimes(n+1))+1);//n为奇数的时候,看n-1和n+1的次数谁小,取最小然后加1 (+1是加上+-1的操作)
}