导读
TL;DR: 本文主要针对小目标检测领域提出了一种名为CFINet
的算法框架,通过采用corase-to-fine
的提议框生成策略和特征模仿学习来解决小目标检测的困难。
过去几年中,目标检测取得了巨大的成功,然而当前优秀的检测器在处理小目标仍存在困难。特别地,已知的问题是先验框与目标区域之间的重叠较低,导致了优化的样本池受限,而区分性信息的匮乏进一步加剧了识别问题。
小目标通常缺乏区分性信息和扭曲的结构,导致模型倾向于产生模糊甚至不正确的预测。现有方法通常通过GAN
或相似性学习来缩小小物体与大物体之间的表示差距,但这些方法忽略了高质量与大尺寸、小尺寸与低质量之间的区别。本文的核心观点是,在模型优化过程中,判定样本是否是好的示例的标准是动态的,并且应根据检测器的当前优化状态进行调整。
因此,为了缓解上述问题,本文提出了CFINet
,这是一个针对小目标检测的两阶段框架,基于由粗到细的流程和特征模仿学习。首先,作者引入了粗到细RPN(CRPN),通过动态锚点选择策略和级联回归来确保小物体的足够高质量的proposal
。然后,通过在传统的检测头部引入了一个特征模仿(FI)分支,以一种模仿的方式促进困扰模型的尺寸受限实例的区域表示。此外,文中还提及了一个辅助的模仿损失,遵循监督对比学习范式,以优化这个分支。
最终,通过将CFINet
与Faster RCNN
结合,在大规模小目标检测基准数据集SODAD
和SODA-A
上取得了最先进的性能,凸显了其相对于基线检测器和其它主流检测方法的优越性。