CFINet:小目标检测新思路

导读

TL;DR: 本文主要针对小目标检测领域提出了一种名为CFINet的算法框架,通过采用corase-to-fine提议框生成策略特征模仿学习来解决小目标检测的困难。

过去几年中,目标检测取得了巨大的成功,然而当前优秀的检测器在处理小目标仍存在困难。特别地,已知的问题是先验框与目标区域之间的重叠较低,导致了优化的样本池受限,而区分性信息的匮乏进一步加剧了识别问题。

小目标通常缺乏区分性信息和扭曲的结构,导致模型倾向于产生模糊甚至不正确的预测。现有方法通常通过GAN或相似性学习来缩小小物体与大物体之间的表示差距,但这些方法忽略了高质量与大尺寸、小尺寸与低质量之间的区别。本文的核心观点是,在模型优化过程中,判定样本是否是好的示例的标准是动态的,并且应根据检测器的当前优化状态进行调整。

因此,为了缓解上述问题,本文提出了CFINet,这是一个针对小目标检测的两阶段框架,基于由粗到细的流程和特征模仿学习。首先,作者引入了粗到细RPN(CRPN),通过动态锚点选择策略和级联回归来确保小物体的足够高质量的proposal。然后,通过在传统的检测头部引入了一个特征模仿(FI)分支,以一种模仿的方式促进困扰模型的尺寸受限实例的区域表示。此外,文中还提及了一个辅助的模仿损失,遵循监督对比学习范式,以优化这个分支。

最终,通过将CFINetFaster RCNN结合,在大规模小目标检测基准数据集SODADSODA-A上取得了最先进的性能,凸显了其相对于基线检测器和其它主流检测方法的优越性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVHub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值