堆排序(heap sort)总结

简介

    以前学数据结构的时候,用的是严的书,对于堆这个结构的概念似懂非懂。往往过了一段时间后有不会。现在趁着再次学习数据结构的机会,结合网上的资料整理出自己对堆的理解。

堆的定义

二叉堆满足二个特性:

   1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。

   2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

堆的性质(需要注意的点)

  1.堆是完全二叉树。

  2.完全二叉树通常用数组存储。

  3.完全 二叉树的节点与其左右子节点的关系:
         左子结点的编号=父结点编号 * 2; 

      右子结点的编号=父结点编号 * 2 + 1;

  4.堆的存储结构:

   数组存储,因为数组第一个编号为0,按照数组标的编号,有类似的对应关系:

   左子结点的数组索引号= 父结点索引号 * 2+1;

   右子结点的数组索引号=父结点索引号 * 2 +2;

堆调整(需要注意的点)(假如最大堆)

       定义:

  1.比较当前结点和它的子结点,如果当前结点小于它的任何一个子结点,则和最大的那个子结点交换。否        则,当前过程结束。

  2.在交换到新位置的结点重复步骤1,直到叶结点。


  3.这里要注意的是:为什么从(i-1)/2开始调整:

              首先从树结构的最后一个节点开始调整堆是无意义的,因为这些结点很显然是叶结点,也就是说它们根本就没有    子结点,连找子结点和去比较的必要都没有了。所以,我们可以忽略这些没有子结点的结点,从后往前找到      第一个拥有子结点的结点,然后从这结点开始向前一个个的进行堆调整。


  4.从哪个结点开始进行调整

      最后的一个元素也肯定就是最终的一个叶结点。那么取它的父结点应该就是有子结点的最大号的元素了。那么 从它开始就是最合适的。取它的父结点可以通过一个简单的(i -1)/ 2来得到,i为当前结点的下标。

   void buildMinHeap(struct MinHeap* minHeap)
  {
       int n = minHeap->size - 1;
       int i;
       //为什么从n/2开始,因为叶子节点不需调。。
       //最后一个叶子节点的父节点是最后一个有孩子的节点
      for (i = (n - 1) / 2; i >= 0; --i)
      minHeapify(minHeap, i);
}


1 资料

heap sort分析和总结   http://shmilyaw-hotmail-com.iteye.com/blog/1775868

 




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值