简介
堆的定义
二叉堆满足二个特性:
1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。
2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。
堆的性质(需要注意的点)
1.堆是完全二叉树。
2.完全二叉树通常用数组存储。
右子结点的编号=父结点编号 * 2 + 1;
4.堆的存储结构:
数组存储,因为数组第一个编号为0,按照数组标的编号,有类似的对应关系:
左子结点的数组索引号= 父结点索引号 * 2+1;
右子结点的数组索引号=父结点索引号 * 2 +2;
堆调整(需要注意的点)(假如最大堆)
定义:
1.比较当前结点和它的子结点,如果当前结点小于它的任何一个子结点,则和最大的那个子结点交换。否 则,当前过程结束。
2.在交换到新位置的结点重复步骤1,直到叶结点。
3.这里要注意的是:为什么从(i-1)/2开始调整:
首先从树结构的最后一个节点开始调整堆是无意义的,因为这些结点很显然是叶结点,也就是说它们根本就没有 子结点,连找子结点和去比较的必要都没有了。所以,我们可以忽略这些没有子结点的结点,从后往前找到 第一个拥有子结点的结点,然后从这结点开始向前一个个的进行堆调整。
4.从哪个结点开始进行调整
最后的一个元素也肯定就是最终的一个叶结点。那么取它的父结点应该就是有子结点的最大号的元素了。那么 从它开始就是最合适的。取它的父结点可以通过一个简单的(i -1)/ 2来得到,i为当前结点的下标。
void buildMinHeap(struct MinHeap* minHeap)
{
int n = minHeap->size - 1;
int i;
//为什么从n/2开始,因为叶子节点不需调。。
//最后一个叶子节点的父节点是最后一个有孩子的节点
for (i = (n - 1) / 2; i >= 0; --i)
minHeapify(minHeap, i);
}
1 资料
heap sort分析和总结 http://shmilyaw-hotmail-com.iteye.com/blog/1775868