matlab 7 重积分

1.    求解积分 \int_{-1}^{1}\int_{-1}^{1}e^{x^2+y^2}dxdy

%求解顺序可变,此处为下到上的求和,改变x和y的for位置,可变为左到右
%数值解
h1=0.01;h2=0.01;s=0;
for y=-1:h1:1;
    for x=-1:h2:1;
        s=s+exp(x^2+y^2)*h2*h1;
    end
end
s


function z = myfun(x,y)
z=exp(x.^2+y.^2);
end
v=integral2(@myfun,-1,1,-1,1)

2.  曲线积分

第一曲线积分:求曲线质量

                         M=\int_{L}^{}\rho (x,y)ds\\ds=\sqrt{(dx)^2+(dy^2)}

s.t.  求解积分   \int_{L}^{}\frac{Z^2}{x^2+y^2}ds,其中L是螺旋线

syms t
x=cos(t);%t在[0:2*pi]间
y=sin(t);
z=t;
ds=sqrt(diff(x)^2+diff(y)^2+diff(z)^2);
simplify(ds)  %简化函数,最后ds为sqrt(2)*dt
%法一数值解
syms t%剩下求解t^2×ds的积分
f=sqrt(2)*t^2;
v1=int(f,0,2*pi)%结果类型为sym
%法二数值解
syms t
ff=@(t)sqrt(2).*t.^2;
v2=quad(ff,0,2*pi)%结果类型为num,编程序要函数句柄
%法三精确解
v3=integral(ff,0,2*pi)

第二曲线积分:物理意义来源于物体再给定力场中沿着曲线运动,计算所做的总功 (和方向有关)               ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​   W= \int_{L}^{}\vec{F}(x,y)d\vec{s}\\\vec{F}=P(x,y)\vec{i}+Q(x,y)\vec{j}\\d\vec{s}=dx\vec{i}+dy\vec{j}\\W=\int_{L}^{}[P(x,y)dx+Q(x,y)dy]

3. 曲面积分:

第一曲面积分:对给定密度的函数(面密度)计算曲面质量

                                         M=\int \int_{s}^{}\rho (x,y,z)dS

dS可以用切平面dA近似,而   dA=\frac{1}{cos\gamma }dxdy ,cosr是切平面法向量n与z轴的方向余弦值

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        M\\=\int \int_{s}^{}\rho (x,y,z)dS\\=\int \int_{D}^{}\rho (x,y,f(x,y))\sqrt{1+\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}}dxdy

假设x=x(t),y=y(t),z=z(t)在曲面s上,则F(x(t),y(t),z(t))=c

两边求导得    {F}'_{x}(t)\times{x}'(t)+{F}'_{y}(t)\times{y}'(t)+{F}'_{z}(t)\times{z}'(t)=0

向量形式可表示为({F}'_{x},{F}'_{y},{F}'_{z})\cdot ({x}'(t),{y}'(t),{z}'(t))=0,所以该F的偏导是切面法向量,进行单位化后,可得到余弦值。(\vec{n}=\sqrt{1+(\frac{\partial F}{\partial x})^2+(\frac{\partial F}{\partial y})^2}

第二曲面积分:物理意义来源于已知流量场(速度场),经过某个给定曲面,计算其流向曲面一侧的流量

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \Phi =\int\int_{\sum }^{}\vec{v}(x,y,z)\cdot d\vec{S}

其中        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \vec{v}=P(x,y,z)\vec{i}+Q(x,y,z)\vec{j}+R(x,y,z)\vec{k}\\d\vec{S}=\vec{n}dS=\\(cos(\alpha ),cos(\beta ),cos(\gamma ))dS\\=(dydz,dxdz,dydx)

        ​​​​​​​        ​​​​​​​\Phi =\int \int_{\sum_{}^{}}^{}P(x,y,z)dydz+Q(x,y,z)dxdz+R(x,y,z)dydx

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值