矩阵乘法的几种表达与逆矩阵

A_{m\times n}\,B_{n \times p}\,C_{m \times p}

A=\begin{bmatrix} 1 &2 \\ 3&4 \end{bmatrix} B=\begin{bmatrix} 4 &5 \\ 6&7 \end{bmatrix} AB=\begin{bmatrix} 16 &19 \\ 36&43 \end{bmatrix}

1.通用方法(行列乘加)

矩阵A的第i行乘以矩阵B的第j列,对应元素相乘后相加,得到Cij

C_{ij}=\sum_{k=1}^{n}a_{ik}b_{kj}=a_{i1}b_{1j}+a_{i2}b_{2j}+....

这就是同济版线性代数的东西,不想多说了,没什么巧。

2.列方法

AB=A\begin{bmatrix} b_1 & b_2 &...&b_p \end{bmatrix}=\begin{bmatrix} Ab_1&Ab_2&...&Ab_p\end{bmatirx}

AB=\begin{bmatrix}A\begin{bmatrix} 4\\ 6 \end{bmatrix} A\begin{bmatrix} 5\\ 7 \end{bmatrix}\end{bmatrix}=\begin{bmatrix} \begin{bmatrix} 16\\36\end{bmatrix}\begin{bmatrix} 19\\43\end{bmatrix}\end{bmatrix}

b_i是矩阵B中的列向量,其实这里可以看作是矩阵B右乘A,是对A的列向量进行线性组合。

3.行方法

AB=\begin{bmatrix} a_1\\ a_2\\ \vdots \\ a_m \end{bmatrix}B=\begin{bmatrix} a_1 B\\ a_2B\\ \vdots \\ a_m B \end{bmatrix}

这里看作是A左乘B,本质上是对B进行每一行的线性组合。

AB=\begin{bmatrix}\begin{bmatrix} 1&2\end{bmatrix} \begin{bmatrix} 5&6\\7&8\end{bmatrix} \begin{bmatrix} 3&4\end{bmatrix} \begin{bmatrix} 5&6\\7&8\end{bmatrix} \end{bmatrix} =\begin{bmatrix} 16 &36 \\ 19&43 \end{bmatrix}


4.矩阵的逆

定义,A^{-1}A=I=AA^{-1},称矩阵A可逆或非奇异(nonsigular不孤单呗),反之则矩阵奇异(sigular没伴),如果AX=0存在非零解,那么矩阵A是不可逆的。为啥?因为矩阵的乘法本质上是线性变换,AX可以看作将矩阵A左乘矩阵X,对X进行行变换,而逆矩阵是为了还原行变换,如果一个不是0的矩阵(向量)被你变换成0了,那我还原个屁。。。所以这种情况A没有逆矩阵。

求逆首选高斯-若尔当方法,具体是啥,翻书

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值