CP.11矩阵空间、秩1矩阵、小世界图

1.矩阵空间

先前所讲的向量空间,都是 n n n维实数空间,现在将矩阵看作向量,例如将 3 × 3 3\times 3 3×3的矩阵看作向量;这相当于从原来的 n n n维扩展到 n × n n\times n n×n维。为什么可以把矩阵看作向量呢?
因为矩阵也服从向量空间的运算,向量能加减、数乘,矩阵同样可以。所以说矩阵也可以当成向量来张成空间,这种空间称之为矩阵空间。

1.1矩阵空间的基

所有 3 × 3 3\times 3 3×3矩阵组成一个矩阵空间M,则矩阵空间M的一组基为:
E 11 = [ 1 0 0 0 0 0 0 0 0 ] , E 12 = [ 0 1 0 0 0 0 0 0 0 ] , E 13 = [ 0 0 1 0 0 0 0 0 0 ] E_{11}=\begin{bmatrix}1&0&0\\0&0&0\\0&0&0\end{bmatrix}, E_{12}=\begin{bmatrix}0&1&0\\0&0&0\\0&0&0\end{bmatrix}, E_{13}=\begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix} E11= 100000000 ,E12= 000100000 ,E13= 000000100
E 21 = [ 0 0 0 1 0 0 0 0 0 ] , E 22 = [ 0 0 0 0 1 0 0 0 0 ] , E 23 = [ 0 0 0 0 0 1 0 0 0 ] E_{21}=\begin{bmatrix}0&0&0\\1&0&0\\0&0&0\end{bmatrix}, E_{22}=\begin{bmatrix}0&0&0\\0&1&0\\0&0&0\end{bmatrix}, E_{23}=\begin{bmatrix}0&0&0\\0&0&1\\0&0&0\end{bmatrix} E21= 010000000 ,E22= 000010000 ,E23= 000000010
E 31 = [ 0 0 0 0 0 0 1 0 0 ] , E 32 = [ 0 0 0 0 0 0 0 1 0 ] , E 33 = [ 0 0 0 0 0 0 0 0 1 ] E_{31}=\begin{bmatrix}0&0&0\\0&0&0\\1&0&0\end{bmatrix}, E_{32}=\begin{bmatrix}0&0&0\\0&0&0\\0&1&0\end{bmatrix}, E_{33}=\begin{bmatrix}0&0&0\\0&0&0\\0&0&1\end{bmatrix} E31= 001000000 ,E32= 000001000 ,E33= 000000001
这九个矩阵线性无关,矩阵空间 M M M的维数为 d i m ( M ) = 9 dim(M)=9 dim(M)=9

2.矩阵空间的子空间

3 × 3 3\times 3 3×3矩阵空间 M M M的子空间有:
1.所有上三角矩阵组成空间 U U U(upper triangular matrix)
2.所有的对称矩阵组成空间 S S S(symmetric matrix)
3.所有对角矩阵组成的空间 D D D(diagonal matrix)(对角阵是上三角阵和对称阵的交集)
S S S空间的维数是6,6个基分别为:
[ 1 0 0 0 0 0 0 0 0 ] , [ 0 0 0 0 1 0 0 0 0 ] , [ 0 0 0 0 0 0 0 0 1 ] , [ 0 1 0 1 0 0 0 0 0 ] , [ 0 0 1 0 0 0 1 0 0 ] , [ 0 0 0 0 0 1 0 1 0 ] \begin{bmatrix}1&0&0\\0&0&0\\0&0&0\end{bmatrix}, \begin{bmatrix}0&0&0\\0&1&0\\0&0&0\end{bmatrix}, \begin{bmatrix}0&0&0\\0&0&0\\0&0&1\end{bmatrix}, \begin{bmatrix}0&1&0\\1&0&0\\0&0&0\end{bmatrix}, \begin{bmatrix}0&0&1\\0&0&0\\1&0&0\end{bmatrix}, \begin{bmatrix}0&0&0\\0&0&1\\0&1&0\end{bmatrix} 100000000 , 000010000 , 000000001 , 010100000 , 001000100 , 000001010
这六个基都是最基本的对称矩阵。
U U U空间的维数是6,6个基分别为:
[ 1 0 0 0 0 0 0 0 0 ] , [ 0 0 0 0 1 0 0 0 0 ] , [ 0 0 0 0 0 0 0 0 1 ] , [ 0 1 0 0 0 0 0 0 0 ] , [ 0 0 1 0 0 0 0 0 0 ] , [ 0 0 0 0 0 1 0 0 0 ] \begin{bmatrix}1&0&0\\0&0&0\\0&0&0\end{bmatrix}, \begin{bmatrix}0&0&0\\0&1&0\\0&0&0\end{bmatrix}, \begin{bmatrix}0&0&0\\0&0&0\\0&0&1\end{bmatrix}, \begin{bmatrix}0&1&0\\0&0&0\\0&0&0\end{bmatrix}, \begin{bmatrix}0&0&1\\0&0&0\\0&0&0\end{bmatrix}, \begin{bmatrix}0&0&0\\0&0&1\\0&0&0\end{bmatrix} 100000000 , 000010000 , 000000001 , 000100000 , 000000100 , 000000010
U U U S S S进行组合,我们还可以得到其他子空间:
交:对称阵空间 S S S和上三角阵空间 U U U的交集为对角阵空间 D D D,维数为3
并:对称阵空间 S S S和上三角阵空间 U U U的并集可以得到所有3*3矩阵,因此这个S+U构成的空间维度是9。

引用链接:https://blog.csdn.net/weixin_44895586/article/details/111311497

3.微分方程与向量空间

d 2 y d x 2 + y = 0 \frac{\mathrm{d^2y} }{\mathrm{d} x^2}+y=0 dx2d2y+y=0
微分方程的通解为 y = c 1 c o s x + c 2 s i n x y=c_1cosx+c_2sinx y=c1cosx+c2sinx,其中c可取任意复数。解的线性组合构成的空间成为解空间,其维度为2. c o s x cosx cosx s i n x sinx sinx可以理解成解空间的一组基。这些并不是向量,是函数,但是可以对其进行线性运算,在线性代数的讨论范畴之内。

4.秩1矩阵

A = [ 1 4 5 2 8 10 ] = [ 1 2 ] [ 1 4 5 ] A=\begin{bmatrix}1&4&5\\2&8&10\end{bmatrix}=\begin{bmatrix}1\\2\end{bmatrix}\begin{bmatrix}1&4&5\end{bmatrix} A=[1248510]=[12][145]
R ( A ) = 1 R(A)=1 R(A)=1秩1矩阵可以改写成一列乘以一行的形式,每个秩1矩阵都可以写成一列乘以一行的形式:
A = U V T A=UV^T A=UVT
秩1矩阵最吸引人的一点是:它可以当作构建其他任何矩阵的“积木块”,例如存在一个 5 × 17 5\times17 5×17的矩阵,它的秩是4,那么可以用4个秩1矩阵组合成这个 5 × 17 5\times17 5×17矩阵。秩为 r r r的矩阵总能分解成 r r r个秩1矩阵。
用矩阵空间 M M M表示所有的 5 × 17 5\times17 5×17矩阵,一个由秩4矩阵组成的空间是M的子空间吗?不是。即使把零矩阵加入也无法构成M子空间,因为对于两个矩阵的加和,秩4矩阵不封闭 r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) rank(A+B)\leq rank(A)+rank(B) rank(A+B)rank(A)+rank(B)
例:假设在 R 4 R^4 R4中有 v = [ v 1 v 2 v 3 v 4 ] v=\begin{bmatrix}v_1\\v_2\\v_3\\v_4\end{bmatrix} v= v1v2v3v4 满足所有分量之和等于零,即 v 1 + v 2 + v 3 + v 4 = 0 v_1+v_2+v_3+v_4=0 v1+v2+v3+v4=0,向量 v v v构成一个子空间 S S S,包含零向量并对线性运算封闭,那么子空间的维数是多少。它是矩阵 A = [ 1 1 1 1 ] A=\begin{bmatrix}1&1&1&1\end{bmatrix} A=[1111]的零空间,因为矩阵 A A A的秩为1,因此其零空间的秩为 n − r = 3 n-r=3 nr=3。零空间的基就是 A X = 0 AX=0 AX=0的特解:
[ − 1 1 0 0 ] [ − 1 0 1 0 ] [ − 1 0 0 1 ] \begin{bmatrix}-1\\1\\0\\0\end{bmatrix}\begin{bmatrix}-1\\0\\1\\0\end{bmatrix}\begin{bmatrix}-1\\0\\0\\1\end{bmatrix} 1100 1010 1001

有时候求解子空间维数的时候,可以考虑子空间是不是某个方程的解空间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值